Skip to main content
Log in

Interpolation Model Predictive Control of Nonlinear Systems Described by Quasi-LPV Model

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the interpolation model predictive control (MPC) algorithm for nonlinear discrete-time systems, which can be represented by affine linear parameter varying (LPV) model. The general nonlinear model is transformed into the quasi-LPV model, then the equivalent polytopic LPV model and disturbed Linear time-invariant (LTI) model are obtained. Therefore, a finite-horizon interpolation MPC algorithm based ellipsoidal invariant set (EIS) is proposed. For comparison, the existing zero-horizon interpolation MPC algorithm, based on EIS, is also described to display the advantages of proposed algorithm. By virtue of the finite-horizon technique, the feasible region of proposed algorithm is much larger than zero-horizon interpolation MPC algorithm. An illustrative example is given to verify the effectiveness of proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zhao, Y., Huang, B., Su, H.Y., and Chu, J., Prediction error method for identification of LPV models, J. Process Control, 2012, vol. 22, no. 1, pp. 180–193.

    Article  Google Scholar 

  2. Verdult, V. and Verhaegen, M., Kernel methods for subspace identification of multivariable LPV and bilinear systems, Automatica, 2005, vol. 41, no. 9, pp. 1557–1565.

    Article  MathSciNet  MATH  Google Scholar 

  3. Rotondo, D., Nejjari, F., and Puig, V., Quasi-LPV modeling, identification and control of a twin rotor MIMO system, Control Eng. Pract., 2013, vol. 21, no. 6, pp. 829–846.

    Article  Google Scholar 

  4. Polat, I., Eskinat, E., and Kose, I.E., Dynamic output feedback control of quasi-LPV mechanical systems, IET Control Theory Appl., 2007, vol. 1, no. 4, pp. 1114–1121.

    Article  MathSciNet  Google Scholar 

  5. Kwiatkowski, A., Boll, M.T., and Werner, H., Automated generation and assessment of affine LPV models, Proc. 45th IEEE Conf. Decis. Control, San Diego, CA, 2006.

  6. Petreczky, M. and Mercere, G., Affine LPV systems: Realization theory, input-output equations and relationship with linear switched systems, Proc. 51st IEEE Conf. Decis. Control, Hawaii, 2012.

  7. Sun, X.D. and Postlethwaite, I., Affine LPV modelling and its use in gain-scheduled helicopter control, UKACC International Conference on Control '98 (Conf. Publ. No. 455), 1998.

  8. Casavola, A., Famularo, D., and Franze, G., Predictive control of constrained nonlinear systems via LPV linear embeddings, Int. J. Robust Nonlinear Control, 2003, vol. 13, nos. 3–4, pp. 281–294.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao, M. and Li, S.Y., An off-line formulation of min-max MPC for nonlinear systems via multiple LPV embeddings, Proc. 7th World Congr. Intell. Control Autom., Chongqing, 2008.

  10. Zhao, M., Li, N., and Li, S.Y., Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings, Sci. China Ser. F-Inf. Sci., 2009, vol. 52, no. 7, pp. 1129–1135.

    MATH  Google Scholar 

  11. Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.M., Constrained model predictive control: Stability and optimality, Automatica, 2000, vol. 36, no. 6, pp. 789–814.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kothare, M.V., Balakrishanan, V., and Morari, M., Robust constrained model predictive control using linear matrix inequalities, Automatica, 1996, vol. 32, no. 10, pp. 1361–1379.

    Article  MathSciNet  MATH  Google Scholar 

  13. Wan, Z. and Kothare, M.V., An efficient off-line formulation of robust model predictive control using linear matrix inequalities, Automatica, 2003, vol. 39, no. 5, pp. 837–846.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, B., Modern Predictive Control, CRC Press, 2009.

    Google Scholar 

  15. Lu, Y. and Arkun, Y., Quasi-min-max MPC algorithms for LPV systems, Automatica, 2000, vol. 36, no. 4, pp. 527–540.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bacic, M., Cannon, M., Lee, Y., and Kouvaritakis, B., General interpolation in MPC and its advantages, IEEE Trans. Autom. Control, 2003, vol. 48, no. 6, pp. 1092–1096.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pluymers, B., Rossiter, J.A., Suykens, J.A.K., and De Moor, B., Interpolation based MPC for LPV systems using polyhedral invariant sets, American Control Conf., Portland, OR, 2005.

  18. Rossiter, J.A., Ding, Y., Pluymers, B., Suykens, J.A.K., and De Moor, B., Interpolation based robust MPC with exact constraint handling, Proc. 44th IEEE Conf. Decis. Control, European Control Conf., Seville, 2005.

  19. Rossiter, J.A., Kouvaritakis, B., and Bacic, M., Interpolation based computationally efficient predictive control, Int. J. Control, 2004, vol. 77, no. 3, pp. 290–301.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, Y.I., Cannon, M., and Kouvaritakis, B., Extended invariance and its use in model predictive control, Automatica, 2005, vol. 41, no. 12, pp. 2163–2169.

    Article  MathSciNet  MATH  Google Scholar 

  21. Rossiter, J.A. and Grieder, P., Using interpolation to improve efficiency of multiparametric predictive control, Automatica, 2005, vol. 41, no. 4, pp. 637–643.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding, Y., and Rossiter, J.A., Comparisons of interpolation methods for the uncertain case, American Control Conf., New York, 2007.

  23. Balandat, M., Interpolation in output-feedback tube-based robust MPC, Proc. of the 50th IEEE Conf. Decis. Control, European Control Conf., Orlando, FL, 2011.

  24. Sui, D. and Ong, C.J., Interpolated model predictive controller for linear systems with bounded disturbances, American Control Conf., New York, 2007.

  25. Sui, D., Feng, L., Ong, C.J., and Hovd, M., Robust explicit model predictive control for linear systems via interpolation techniques, Int. J. Robust Nonlinear Control, 2010, vol. 20, no. 10, pp. 1166–1175.

    MathSciNet  MATH  Google Scholar 

  26. Pluymers, B., Rossiter, J.A., Suykens, J.A.K., and De Moor, B., The efficient computation of polyhedral invariant sets for linear systems with polytopic uncertainty, American Control Conf., Portland, 2005.

  27. Blanchini, F., Set invariance in control, Automatica, 1999, vol. 35, no. 11, pp. 1747–1767.

    Article  MathSciNet  MATH  Google Scholar 

  28. Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., and Mayne, D.Q., Invariant approximations of the minimal robust positively invariant set, IEEE Trans. Autom. Control, 2005, vol. 50, no. 3, pp. 406–410.

    Article  MathSciNet  MATH  Google Scholar 

  29. Rossiter, J.A., Model-Based Predictive Control—A Practical Approach, CRC Press, 2003.

    Book  Google Scholar 

  30. Mayne, D.Q., Seron, M.M., and Rakovi, S.V., Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 2005, vol. 41, no. 2, pp. 219–224.

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhao, M. and Ding, B., Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics, ISA Trans., 2014, vol. 55, no. 1, pp. 1–22.

    Article  Google Scholar 

  32. Lofberg, J., YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE Int. Symp. Comput. Aided Control Syst. Design, Taipei, 2004.

  33. Ding, B. and Li, S.Y., Design and analysis of constrained nonlinear quadratic regulator, ISA Trans., 2003, vol. 42, no. 2, pp. 251–258.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Hainan Province of China (grant no. 20166213), National Natural Science Foundation of China (grant no. 61403055), Research Project of Chongqing Science and Technology Commission (grant no. cstc2014jcyjA40005), and the Scientific Research Foundation of Hainan University (grant no. kyqd1575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zhao.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng Zhao, Jiang, C., Tang, X. et al. Interpolation Model Predictive Control of Nonlinear Systems Described by Quasi-LPV Model. Aut. Control Comp. Sci. 52, 354–364 (2018). https://doi.org/10.3103/S0146411618050085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618050085

Keywords:

Navigation