Skip to main content
Log in

Fractal Analysis of the Composition and Structure of Sulfide Disseminated Ores in Picritic Gabbro-Dolerites of the Oktyabrsky Deposit, Norilsk Ore Cluster

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

Ores from wells drilled in the Kharaelakh intrusive of the Talnakh ore cluster are analyzed. Vein-disseminated sulfide copper–nickel mineralization in picritic gabbro-dolerites on the eastern flank of the Oktyabrsky deposit is characterized as interstitial drop-shaped mineralization. Samples for each type of ores were examined by 3D X-ray tomography and analyzed using fractal theory. Based on the results of the study, it has been concluded that interstitial drop-shaped mineralization samples at different scales are correlated with the fractal dimension of ore minerals. The average three-dimensional fractal dimension of the X-ray tomographic phase of sulfides and minerals of the spinel group is 2.13 and the average two-dimensional dimension of sulfide mineralization aggregates alone is 1.15, which is consistent with the Mandelbrot rule of thumb, according to which the three-dimensional fractal dimension is one more than the two-dimensional one. The numerical values of the fractal dimension, which describe the segregation dynamics, can be important for the technology of concentration of new ore types from deposit flanks and serve as an additional criterion for identifying zones with the highest intensity of ore mineralization in disseminated ores during prospecting and exploration works in the Norilsk ore district.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Afzal, P., Ahmadi, K., and Rahbar, K., Application of fractal-wavelet analysis for separation of geochemical anomalies, J. African Earth Sci., 2017, vol. 128, pp. 27–36.

    Article  Google Scholar 

  2. Blenkinsop, T.G. and Sanderson, D.J., Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe craton, Spec. Publ.—Geol. Soc. London, 1999, vol. 155, no. 1, pp. 141–151.

    Article  Google Scholar 

  3. Carlson, C.A., Spatial distribution of ore deposits, Geology, 1991, vol. 19, no. 2, pp. 111–114.

    Article  Google Scholar 

  4. Chappard, D., Legrand, E., Haettich, B., et al., Fractal dimension of trabecular bone: Comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity, J. Pathology: J. Pathol. Soc. Great Britain and Ireland, 2001, vol. 195, no. 4, pp. 515–521.

    Article  Google Scholar 

  5. Chen, G. and Cheng, Q., Fractal-based wavelet filter for separating geophysical or geochemical anomalies from background, Math. Geosci., 2018, vol. 50, no. 3, pp. 249–272.

    Article  Google Scholar 

  6. Cheng, Q., Agterberg, F.P., and Ballantyne, S.B., The separation of geochemical anomalies from background by fractal methods, J. Geochem. Explor., 1994, vol. 51, no. 2, pp. 109–130.

    Article  Google Scholar 

  7. Cheng, Q., Xu, Y., and Grunsky, E., Integrated spatial and spectrum method for geochemical anomaly separation, Nat. Resour. Res., 2000, vol. 9, no. 1, pp. 43–52.

    Article  Google Scholar 

  8. Chernyavsky, A.V. and Stepenshchikov, D.G., Image segmentation method for counting the percentage of the minerals by author’s program, in Tr. Fersman. Nauch. Sess. GI KNTs RAN (Proc. Fersman Sci. Sess. Geol. Inst. Kola Sci. Center Russ. Acad. Sci.), 2021, no. 18, pp. 414–418.

  9. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, England, John Wiley, 2004.

    Google Scholar 

  10. Geologiya Noril’skoi metallogenicheskoi provintsii (Geology of Norilsk Metallogenic Provinces), Nikulin, I. I., Ed., Moscow: MAKS Press, 2020.

    Google Scholar 

  11. Gavrilut, A., Merches, I., and Agop, M., Atomicity Through Fractal Measure Theory, England, Springer Int. Publ., 2019.

    Book  Google Scholar 

  12. Goryainov, P.M. and Ivanyuk, G.Yu., Samoorganizatsiya mineral’nykh system (Self-organization of the Mineral systems), Moscow: GEOS, 2001, vol. 312.

  13. Goryainov, P.M. Ivanyuk, G.Yu., et al., Structural organization of the ore zone of the Koashva apatite-nepheline deposit, Otech. Geol., 2007, no. 2, pp. 55–60.

  14. Goryainov, P.M., Ivanyuk, G.Y., and Kalashnikov, A.O., Topography formation as an element of lithospheric self-organization, Russ. Geol. Geophys., 2013, vol. 54, no. 9, pp. 1071–1082.

    Article  Google Scholar 

  15. Haddad-Martim, P.M., de Souza Filho, C.R., and Carranza, E.J.M., Spatial analysis of mineral deposit distribution: A review of methods and implications for structural controls on iron oxide-copper-gold mineralization in Carajas, Brazil, Ore Geol. Rev., 2017, vol. 81, pp. 230–244.

    Article  Google Scholar 

  16. Harrigan, T.P. and Mann, R.W., Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor, J. Mater. Sci., 1984, vol. 19, no. 3, pp. 761–767.

    Article  Google Scholar 

  17. Hounsfield, G.N., Computerized transverse axial scanning (tomography): P. 1. Description of system, British J. Radiol., 1973, vol. 46, no. 552, pp. 1016–1022.

    Article  Google Scholar 

  18. Ivanyuk, G., Yakovenchuk, V., Pakhomovsky, Y., et al., Self-Organization of the Khibiny Alkaline Massif (Kola Peninsula, Russia), Croatia, Rijeka: InTech, 2012.

    Book  Google Scholar 

  19. Kruhl, J.H., Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy, J. Structur. Geol., 2013, vol. 46, pp. 2–21.

    Article  Google Scholar 

  20. Mandelbrot, B.B., The Fractal Geometry of Nature, New York: WH freeman, 1982, vol. 1.

    Google Scholar 

  21. McCaffrey, K.J.W. and Johnston, J.D., Fractal analysis of a mineralized vein deposit: Curraghinalt gold deposit, County Tyrone, Mineral. Deposita, 1996, vol. 31, no. 1, pp. 52–58.

    Article  Google Scholar 

  22. Perugini, D. and Poli, G., The mixing of magmas in plutonic and volcanic environments: Analogies and differences, Lithos, 2012, vol. 153, pp. 261–277.

    Article  Google Scholar 

  23. Perugini, D., Poli, G., and Mazzuoli, R., Chaotic advection, fractals and diffusion during mixing of magmas: Evidence from lava flows, J. Volcanol. Geothermal Res., 2003, vol. 124, nos. 3–4, pp. 255–279.

    Article  Google Scholar 

  24. Peternell, M., Bitencourt, M., Kruhl, J.H., et al., Macro and microstructures as indicators of the development of syntectonic granitoids and host rocks in the Camboriu region, Santa Catarina, Brazil, Tectonophysics, 2010, vol. 29, no. 3, pp. 738–750.

    Google Scholar 

  25. Peternell, M., Bitencourt, M.F., and Kruhl, J.H., Combined quantification of anisotropy and inhomogeneity of magmatic rock fabrics—An outcrop scale analysis recorded in high resolution, J. Structur. Geol., 2011, vol. 33, no. 4, pp. 609–623.

    Article  Google Scholar 

  26. Pourgholam, M.M., et al., Detection of geochemical anomalies using a fractal-wavelet model in Ipack area, Central Iran, J. Geochem. Explor., 2021, vol. 220, pp. 106–675.

    Article  Google Scholar 

  27. Rad’ko, V.A., Model of dynamic differentiation of intrusive traps in the northwest of the Siberian Platform, Geol. Geofiz., 1991, no. 11, pp. 19–27.

  28. Roberts, S., Sanderson, D.J., and Gumiel, P., Fractal analysis and percolation properties of veins, Spec. Publ.—Geol. Soc. London, 1999, vol. 155, no. 1, pp. 7–16.

    Article  Google Scholar 

  29. Wang, W., Zhao, J., and Cheng, Q., Application of singularity index mapping technique to gravity/magnetic data analysis in southeastern Yunnan mineral district, China, J. Applied Geophys., 2013, vol. 92, pp. 39–49.

    Article  Google Scholar 

  30. Xiao, F., Chen, Z., Chen, J., et al., A batch sliding window method for local singularity mapping and its application for geochemical anomaly identification, Comp. Geosci., 2016, vol. 90, pp. 189–201.

    Article  Google Scholar 

  31. Yakymchuk, C., et al., Leucosome distribution in migmatitic paragneisses and orthogneisses: a record of self-organized melt migration and entrapment in a heterogeneous partially-molten crust, Tectonophysics, 2013, vol. 603, pp. 136–154.

    Article  Google Scholar 

  32. Zuo, R. and Wang, J., Fractal/multifractal modeling of geochemical data: A review, J. Geochem. Explor., 2016, vol. 164, pp. 33–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. I. Nikulin, A. O. Kalashnikov, I. O. Krylov, J. A. Mikhailova, N. Yu. Groshev or R. I. Kadyrov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Zabolotny

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikulin, I.I., Kalashnikov, A.O., Krylov, I.O. et al. Fractal Analysis of the Composition and Structure of Sulfide Disseminated Ores in Picritic Gabbro-Dolerites of the Oktyabrsky Deposit, Norilsk Ore Cluster. Moscow Univ. Geol. Bull. 78, 239–253 (2023). https://doi.org/10.3103/S0145875223020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875223020102

Keywords:

Navigation