Skip to main content
Log in

Features of Using 2,6-Dichlorophenolindophenol as An Electron Acceptor in Photosynthesis Studies

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

2,6-dichlorophenolindophenol (DCPIP) is a redox indicator widely used to study electron transfer reactions in biological systems, including in the process of photosynthesis. DCPIP exists in solution in two forms, “pink” and “blue,” which transform into each other during protonation/deprotonation. Upon reduction, the DCPIP is discolored. We investigated the pH-dependence of DCPIP reduction rate in the presence of the photosystem II (PSII) at two wavelengths: 522 nm (isobestic DCPIP point) and 600 nm (near the absorption maximum of the deprotonated “blue” form). It was shown that, in experiments with a change of the pH medium, measuring at a wavelength of 600 nm requires corrections related to changes in the ratio of the “blue” and “pink” forms of the acceptor as well as using the pK parameter of this acceptor, whose рK values vary in various sources, to calculate the DCPIP reduction rate. Measurements at the isobestic point (522 nm) allowed for avoiding these complexities. We also found that the maximum at the pH-dependence of the DCPIP reduction rate by PSII shifted by approximately 1 unit to the acidic region relative to the maximum of the acceptor pair 2,6-dichloro-p-benzoquinone–potassium ferricyanide reduction rate pH-dependence. This shift may be due to the lower availability of the QB site on the acceptor side of PSII for the charged deprotonated DCPIP form compared to the uncharged protonated form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig 3.

Similar content being viewed by others

REFERENCES

  1. Wiwczar, J. and Brudvig, G.W., Alternative electron acceptors for photosystem II, in Photosynthesis: Structures, Mechanisms, and Applications, Hou, H., Najafpour, M., Moore, G., and Allakhverdiev, S., Eds., Cham: Springer, 2017, pp. 51−66.

    Google Scholar 

  2. Vernon, L.P. and Shaw, E.R., Photoreduction of 2,6-dichlorophenolindophenol by diphenylcarbazide: a photosystem 2 reaction catalyzed by tris-washed chloroplasts and subchloroplast fragments, Plant Physiol., 1969, vol. 44, no. 11, pp. 1645−1649.

    Article  CAS  Google Scholar 

  3. Chernev, P., Fischer, S., Hoffmann, J., Oliver, N., Assunção, R., Yu, B., Burnap, R.L., Zaharieva, I., Nürnberg, D.J., Haumann, M., and Dau, H., Light-driven formation of manganese oxide by today’s photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis, Nat. Commun.,2020, vol. 11, no. 1, art. ID 6110.

    Article  CAS  Google Scholar 

  4. Lovyagina, E.R., Loktyushkin, A.V., and Semin, B.K., Effective binding of Tb3+ and La3+ cations on the donor side of Mn-depleted photosystem II, J. Biol. Inorg. Chem., 2021, vol. 26, no. 1, pp. 1−11.

    Article  CAS  Google Scholar 

  5. Eröss, K., Svehla, G., and Erdey, L., The use of 2,6-dichlorophenolindophenol as indicator in acid-base titrations, Anal. Chim. Acta, 1964, vol. 31, pp. 246−250.

    Article  Google Scholar 

  6. Berthold, D.A., Babcock, G.T., and Yocum, C.F., A highly resolved, oxygen evolving photosystem II preparation from spinach thylakoid membranes: EPR and electron transport properties, FEBS Lett., 1981, vol. 134, no. 2, pp. 231−234.

    Article  CAS  Google Scholar 

  7. Loktyushkin, A.V., Lovyagina, E.R., and Semin, B.K., Interaction of terbium cations with the donor side of photosystem II in higher plants, Moscow Univ. Biol. Sci. Bull., 2019, vol. 74, no. 2, pp. 81–85.

    Article  Google Scholar 

  8. Dunahay, T.G., Staechelin, L.A., Seibert, M., Ogilvie, P.D., and Berg, S.P., Structural biochemical and biophysical characterization of four oxygen-evolving Photosystem  II preparations from spinach, Biochim. Biophys. Acta, Bioenerg., 1984, vol. 764, no. 2, pp. 179−193.

    Article  CAS  Google Scholar 

  9. Kurreck, J., Seeliger, A.G., Reifarth, F., Karge, M., and Renger, G., Reconstitution of the endogenous plastoquinone pool in photosystem II (PS II) membrane fragments, inside-out-vesicles, and PS II core complexes from spinach, Biochemistry, 1995, vol. 34, no. 48, pp. 15721−15731.

    Article  CAS  Google Scholar 

  10. Porra, R.J., Thompson, W.A., and Kriedemann, P.E., Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Biochim. Biophys. Acta, Bioenerg., 1989, vol. 975, no. 3, pp. 384−394.

    Article  CAS  Google Scholar 

  11. Tonomura, B., Nakatani, H., Ohnishi, M., Yamaguchi-Ito, J., and Hiromi, K., Test reactions for a stopped-flow apparatus: Reduction of 2,6-dichlorophenolindophenol and potassium ferricyanide by L-ascorbic acid, Anal. Biochem., 1978, vol. 84, no. 2, pp. 370−383.

    Article  CAS  Google Scholar 

  12. Petrova, A., Mamedov, M., Ivanov, B., Semenov, A., and Kozuleva, M., Effect of artificial redox mediators on the photoinduced oxygen reduction by photosystem I complexes, Photosynth. Res, 2018, vol. 137, no. 3, pp. 421−429.

    Article  CAS  Google Scholar 

  13. Jahn, B., Jonasson, N.S., Hu, H., Singer, H., Pol, A., and Good, N.M., Op den Camp, H.J.M., Martinez-Gomez, N.C., and Daumann L.J., Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster’s Blue in methanol dehydrogenase assays, J. Biol. Inorg. Chem., 2020, vol. 25, no. 2, pp. 199−212.

    Article  CAS  Google Scholar 

  14. Armstrong, J.M.D., The molar extinction coefficient of 2, 6-dichlorophenol indophenol, Biochim. Biophys. Acta, Gen. Subj., 1964, vol. 86, no. 1, pp. 194−197.

    Article  CAS  Google Scholar 

  15. Izawa, S., Acceptors and donors and chloroplast electron transport, in Methods in Enzymology. Photosynthesis and Nitrogen Fixation, San Pietro, A., Ed., Cambridge: Academic, 1980, vol. 69, part C, pp. 413−434.

    Google Scholar 

  16. Schlodder, E. and Meyer, B., pH dependence of oxygen evolution and reduction kinetics of photooxidized chlorophyll a II (P-680) in Photosystem II particles from Synechococcus sp., Biochim. Biophys. Acta, Bioenerg., 1987, vol. 890, no. 1, pp. 23−31.

    Article  CAS  Google Scholar 

  17. Vass, I. and Styring, S., pH-dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials, Biochemistry, 1991, vol. 30, no. 3, pp. 830−839.

    Article  CAS  Google Scholar 

  18. Haddy, A., Hatchell, J.A., Kimel, R.A., and Tho-mas, R., Azide as a competitor of chloride in oxygen evolution by Photosystem II, Biochemistry, 1999, vol. 38, no. 19, pp. 6104−6110.

    Article  CAS  Google Scholar 

  19. Schiller, H. and Dau, H., Preparation protocols for high-activity Photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy, J. Photochem. Photobiol., B, 2000, vol. 55, no. 2−3, pp. 138−144.

    Article  CAS  Google Scholar 

  20. Semin, B.K., Davletschina, L.N., Aleksandrov, A.Yu., Lanchinskaya, V.Yu., Novakova, A.A., and Ivanov, I.I., pH-dependence of iron binding to the donor side of photosystem II, Biochemistry (Moscow), 2004, vol. 69, no. 3, pp. 410−419.

    Google Scholar 

  21. Damoder, R. and Dismukes, G.C., pH dependence of the multiline, manganese EPR signal for the ‘S2’state in PS II particles: Absence of proton release during the S1→ S2 electron transfer step of the oxygen evolving system, FEBS Lett., 1984, vol. 174, no. 1, pp. 157−161.

    Article  CAS  Google Scholar 

  22. Semin, B.K., Davletshina, L.N., Timofeev, K.N., Ivanov, I.I., Rubin, A.B., and Seibert, M., Production of reactive oxygen species in decoupled, Ca2+-depleted PSII and their use in assigning a function to chloride on both sides of PSII, Photosynth. Res., 2013, vol. 117, no. 1, pp. 385−399.

    Article  CAS  Google Scholar 

  23. Ono, T. and Inoue, Y., Discrete extraction of the Ca atom functional for O2 evolution in higher plant photosystem II by a simple low pH treatment, FEBS Lett., 1988, vol. 227, no. 2, pp. 147−152.

    Article  CAS  Google Scholar 

  24. Zharmukhamedov, S.K. and Allakhverdiev, S.I., Chemical inhibitors of photosystem II, Russ. J. Plant Physiol., 2021, vol. 68, no. 2, pp. 212−227.

    Article  CAS  Google Scholar 

Download references

Funding

The research was carried out as part of the Scientific Project of the State Order of the Government of the Russian Federation to Moscow State University no. 121032500058-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Loktyushkin.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loktyushkin, A.V., Lovyagina, E.R. & Semin, B.K. Features of Using 2,6-Dichlorophenolindophenol as An Electron Acceptor in Photosynthesis Studies. Moscow Univ. Biol.Sci. Bull. 76, 210–215 (2021). https://doi.org/10.3103/S0096392521040088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392521040088

Keywords:

Navigation