Skip to main content

Advertisement

Log in

Overview of Cell Models: From Organs Cultured in a Petri Dish to Organs-on-Chips

  • Cell Biology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

In this review, we tried to elucidate the origin and development of different animal and human cell culture methodologies used to evaluate the effects of various factors and substances in vitro. Organ cultures and conventional two-dimensional cultures of dissociated cells of various types, such as primary, tumor, induced pluripotent, stem, etc., have their advantages and drawbacks but usually do not represent accurate models for studying biological processes that take place in living organisms. Nowadays, high-throughput cell assays on the basis of various methods of signal detection (optical utilizing colorimetric, luminescent and fluorescent methods of detection, and electrochemical) are widely used at early stages of drug development for selection of the most active compounds and evaluation of their cytotoxic effects. The use of animals as models for drug testing is being criticized because of the lack of correlation between the results obtained in studies on them and on humans, and also because of the high cost and ethical issues. Therefore, much effort is put to create models based on human cells. This is how cultures emerged that utilize a three-dimensional network to simulate the architecture of tissues in vivo, and then so-called organs-on-chips—microfluidic microfabricated devices combining several types of cells—that replicate physical and chemical parameters of the microenvironment of cells in living organisms. In summary, experimental cell models have come a long way from the whole organs cultivated in a growth medium to almost complete reconstruction of organs in vitro based on the cutting-edge engineering approach with the use of different cell types. This currently enables one to replicate complex biological processes and study the influence of different substances and factors on them more successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loeb, L., Über die Entstehung von Bindegewebe, Leucocyten und roten Blutkoerperchen aus Epithel und über eine Methode, isolierte Gewebsteile zu zuechten, Chicago: M. Stern and Co., 1897.

    Google Scholar 

  2. Pomerat, C.M. and Leake, C.D., Short term cultures for drug assays: General considerations, Ann. N. Y. Acad. Sci., 1954, vol. 58, pp. 1110–1128.

    Article  CAS  PubMed  Google Scholar 

  3. DiMasi, J.A., Hansen, R.W., and Grabowski, H.G., The price of innovation: New estimates of drug development costs, J. Health Econ., 2003, vol. 22, no. 2, pp. 151–185.

    Article  PubMed  Google Scholar 

  4. Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., and Greyson, D., The cost of drug development: A systematic review, Health Policy, 2011, vol. 100, no. 1, pp. 4–17.

    Article  PubMed  Google Scholar 

  5. Sundberg, S.A., High-throughput and ultra-highthroughput screening: Solution- and cell-based approaches, Curr. Opin. Biotechnol., 2000, vol. 11, no. 1, pp. 47–53.

    Article  CAS  PubMed  Google Scholar 

  6. An, W.F. and Tolliday, N., Cell-based assays for high throughput screening, Mol. Biotechnol., 2010, vol. 45, no. 2, pp. 180–186.

    Article  CAS  PubMed  Google Scholar 

  7. Ponec, M., Boelsma, E., Gibbs, S., and Mommaas, M., Characterization of reconstructed skin models, Skin Pharmacol. Appl. Skin Physiol., 2002, vol. 15, no. 1, pp. 4–17.

    Article  CAS  PubMed  Google Scholar 

  8. Meleshina, A.V., Bystrova, A.S., Rogovaya, O.S., Vorotelyak, E.A., Vasiliev, A.V., and Zagaynova, E.V., Tissue-engineered skin constructs and application of stem cells for creation of skin equivalents (review), Sovr. Tehnol. Med., 2017, vol. 9, no. 1, pp. 198–218.

    Article  Google Scholar 

  9. Jírová, D., Basketter, D., Liebsch, M., Bendová, H., Kejlová, K., Marriott, M., and Kandárová, H., Comparison of human skin irritation patch test data with in vitro skin irritation assays and animal data, Contact Dermatitis, 2010, vol. 62, no. 2, pp. 109–116.

    Article  PubMed  Google Scholar 

  10. Bou-Dargham, M.J., Khamis, Z.I., Cognetta, A.B., and Sang, Q.A., The role of interleukin-1 in inflammatory and malignant human skin diseases and the rationale for targeting interleukin-1 alpha, Med. Res. Rev., 2017, vol. 37, no. 1, pp. 180–216.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, C., An, Q., Zhao, D., Li, M., Zheng, H., Zhang, J., Liu, J., Yang, L., and Su, N., Insight into the mechanism of SDS irritation on human skin keratinocytes by examination of changes in gene expression, Am. J. Biomed. Sci., 2016, vol. 8, no. 4, pp. 311–321.

    Article  Google Scholar 

  12. Hoffmann, J., Heisler, E., Karpinski, S., Losse, J., Thomas, D., Siefken, W., Ahr, H.J., Vohr, H.W., and Fuchs, H.W., Epidermal-skin-test 1,000 (EST- 1,000)—a new reconstructed epidermis for in vitro skin corrosivity testing, Toxicol. in Vitro, 2005, vol. 19, no. 7, pp. 925–929.

    Article  CAS  PubMed  Google Scholar 

  13. Rasmussen, C., Gratz, K., Liebel, F., Southall, M., Garay, M., Bhattacharyya, S., Simon, N., Vander, Zanden M., Van Winkle, K., Pirnstill, J., Pirnstill, S., Comer, A., and Allen-Hoffmann, B.L., The StrataTest® human skin model, a consistent in vitro alternative for toxicological testing, Toxicol. in Vitro, 2010, vol. 24, no. 7, pp. 2021–2029.

    Article  CAS  PubMed  Google Scholar 

  14. Cotovio, J., Onno, L., Justine, P., Lamure, S., and Catroux, P., Generation of oxidative stress in human cutaneous models following in vitro ozone exposure, Toxicol. in Vitro, 2001, vol. 15, nos. 4–5, pp. 357–362.

    Article  CAS  PubMed  Google Scholar 

  15. Eglen, R. and Reisine, T., Primary cells and stem cells in drug discovery: Emerging tools for high-throughput screening, Assay Drug Dev. Technol., 2011, vol. 9, no. 2, pp. 108–124.

    Article  CAS  PubMed  Google Scholar 

  16. Allen, D.D., Caviedes, R., Cardenas, A.M., Shimahara, T., Segura-Aguilar, J., and Caviedes, P.A., Cell lines as in vitro models for drug screening and toxicity studies, Drug Dev. Ind. Pharm., 2005, vol. 31, no. 8, pp. 757–768.

    Article  CAS  PubMed  Google Scholar 

  17. Donato, M.T., Lahoz, A., Castell, J.V., and Gomez-Lechon, M.J., Cell lines: A tool for in vitro drug metabolism studies, Curr. Drug Metab., 2008, vol. 9, no. 1, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, S.V., Haber, D.A., and Settleman, J., Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents, Nat. Rev. Cancer, 2010, vol. 10, no. 4, pp. 241–253.

    Article  CAS  PubMed  Google Scholar 

  19. Janicke, R.U., MCF-7 breast carcinoma cells do not express caspase-3, Breast Cancer Res. Tr., 2009, vol. 117, no. 1, pp. 219–221.

    Article  Google Scholar 

  20. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 26, no. 4, pp. 663–676.

    Article  Google Scholar 

  21. Dashinimaev, E.B., Artyuhov, A.S., Bolshakov, A.P., Vorotelyak, E.A., and Vasiliev, A.V., Neurons derived from induced pluripotent stem cells of patients with Down syndrome reproduce early stages of Alzheimer’s disease type pathology in vitro, J. Alzheimers Dis., 2017, vol. 56, no. 2, pp. 835–847.

    Article  CAS  PubMed  Google Scholar 

  22. Mak, I.W., Evaniew, N., and Ghert, M., Lost in translation: Animal models and clinical trials in cancer treatment, Am. J. Transl. Res., 2014, vol. 6, no. 2, pp. 114–118.

    PubMed  PubMed Central  Google Scholar 

  23. Seok, J., Warren, H.S., Cuenca, A.G., et al., Genomic responses in mouse models poorly mimic human inflammatory diseases, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 9, pp. 3507–3512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fitzgerald, K.A., Malhotra, M., Curtin, C.M., O’Brien, F.J., and O’Driscoll, C.M., Life in 3D is never flat: 3D models to optimise drug delivery, J. Control. Release, 2015, vol. 215, pp. 39–54.

    Article  CAS  PubMed  Google Scholar 

  25. Basu, S. and Yang, S.T., Astrocyte growth and glial cell line-derived neurotrophic factor secretion in threedimensional polyethylene terephthalate fibrous matrices, Tissue Eng., 2005, vol. 11, nos. 5–6, pp. 940–952.

    Article  CAS  PubMed  Google Scholar 

  26. Smitskamp-Wilms, E., Pinedo, H.M., Veerman, G., Ruiz van Haperen, V.W., and Peters, G.J., Postconfluent multilayered cell line cultures for selective screening of gemcitabine, Eur. J. Cancer, 1998, vol. 34, no. 6, pp. 921–926.

    Article  CAS  PubMed  Google Scholar 

  27. Wu, M.H., Urban, J.P., Cui, Z., and Cui, Z.F., Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture, Biomed. Microdevices, 2006, vol. 8, no. 4, pp. 331–340.

    Article  CAS  PubMed  Google Scholar 

  28. Wu, M.H., Huang, S.B., and Lee, G.B., Microfluidic cell culture systems for drug research, Lab Chip, 2010, vol. 10, no. 8, pp. 939–956.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, S.Y., Hung, P.J., and Lee, P.J., Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells, Biomed. Microdevices, 2011, vol. 13, no. 4, pp. 753–758.

    Article  CAS  PubMed  Google Scholar 

  30. Pazzano, D., Mercier, K.A., Moran, J.M., Fong, S.S., DiBiasio, D.D., Rulfs, J.X., Kohles, S.S., and Bonassar, L.J., Comparison of chondrogenesis in static and perfused bioreactor culture, Biotechnol. Progr., 2000, vol. 16, no. 5, pp. 893–896.

    Article  CAS  Google Scholar 

  31. Hughes, J.D., Blagg, J., Price, D.A., et al., Physiochemical drug properties associated with in vivo toxicological outcomes, Bioorg. Med. Chem. Lett., 2008, vol. 18, no. 17, pp. 4872–4875.

    Article  CAS  PubMed  Google Scholar 

  32. Betts, J.I. and Baganz, F., Miniature bioreactors: Current practices and future opportunities, Microb. Cell Fact., 2006, vol. 5, p. 21.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ding, L., Du, D., Zhang, X., and Ju, H., Trends in cellbased electrochemical biosensors, Curr. Med. Chem., 2008, vol. 15, no. 30, pp. 3160–3170.

    Article  CAS  PubMed  Google Scholar 

  34. Berry, M.N. and Grivell, M.B., An electrochemical description of metabolism, in Bioelectrochemistry of Cells and Tissues, Walz, D., Berg, H., Milazzo, G., Eds., Basel: Birkhauser Verlag, 1995, pp. 134–158.

  35. Nonner, W. and Eisenberg, B., Electrodiffusion in ionic channels of biological membranes, J. Mol. Liq., 2000, vol. 87, no. 2, pp. 149–162.

    Article  CAS  Google Scholar 

  36. Borgmann, S., Radtke, I., EricLSEn, T., Blöchl, A., Heumann, R., and Schuhmann, W., Electrochemical high-content screening of nitric oxide release from endothelial cells, ChemBioChem, 2006, vol. 7, no. 4, pp. 662–668.

    Article  CAS  PubMed  Google Scholar 

  37. Kamei, K., Haruyama, T., Mie, M., Yanagida, Y., Aizawa, M., and Kobatake, E., The construction of endothelial cellular biosensing system for the control of blood pressure drugs, Biosens. Bioelectron., 2004, vol. 19, no. 9, pp. 1121–1124.

    Article  CAS  PubMed  Google Scholar 

  38. May, K.M., Wang, Y., Bachas, L.G., and Anderson, K.W., Development of a whole-cell-based biosensor for detecting histamine as a model toxin, Anal. Chem., 2004, vol. 76, no. 14, pp. 4156–4161.

    Article  CAS  PubMed  Google Scholar 

  39. Yeon, J.H. and Park, J.K., Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip, Anal. Biochem., 2005, vol. 341, no. 2, pp. 308–315.

    Article  CAS  PubMed  Google Scholar 

  40. Wodnicka, M., Guarino, R.D., Hemperly, J.J., Timmins, M.R., Stitt, D., and Pitner, J.B., Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays, J. Biomol. Screening, 2000, vol. 5, no. 3, pp. 141–152.

    Article  CAS  Google Scholar 

  41. O’Brien, J., Wilson, I., Orton, T., and Pognan, F., Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur. J. Biochem., 2000, vol. 267, no. 17, pp. 5421–5426.

    Article  PubMed  Google Scholar 

  42. Derfus, A.M., Chan, W.C., and Bhatia, S.N., Probing the cytotoxicity of semiconductor quantum dots, Nano Lett., 2004, vol. 4, no. 1, pp. 11–18.

    Article  CAS  PubMed  Google Scholar 

  43. Malich, G., Markovic, B., and Winder, C., The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines, Toxicology, 1997, vol. 124, no. 3, pp. 179–192.

    Article  CAS  PubMed  Google Scholar 

  44. Khokhlov, A.N. and Morgunova, G.V., On the constructing of survival curves for cultured cells in cytogerontological experiments: A brief note with three hierarchy diagrams, Moscow Univ. Biol. Sci. Bull., 2015, vol. 70, no. 2, pp. 67–71.

    Article  Google Scholar 

  45. Durick, K. and Negulescu, P., Cellular biosensors for drug discovery, Biosens. Bioelectron., 2001, vol. 16, nos. 7–8, pp. 587–592.

    Article  CAS  PubMed  Google Scholar 

  46. Fan, F. and Wood, K.V., Bioluminescent assays for high-throughput screening, Assay Drug Dev. Technol., 2007, vol. 5, no. 1, pp. 127–136.

    Article  CAS  PubMed  Google Scholar 

  47. Meisenheimer, P.L., O’Brien, M.A., and Cali, J.J., Luminogenic enzyme substrates: The basis for a new paradigm in assay design, Promega Notes, 2008, vol. 100, pp. 22–26.

    CAS  Google Scholar 

  48. Inoue, Y., Tojo, A., Sekine, R., Soda, Y., Kobayashi, S., Nomura, A., Izawa, K., Kitamura, T., Okubo, T., and Ohtomo, K., In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukemia model animals, Eur. J. Nucl. Med. Mol. Imaging, 2006, vol. 33, no. 5, pp. 557–565.

    Article  PubMed  Google Scholar 

  49. Gribbon, P. and Sewing, A., Fluorescence readouts in HTS: No gain without pain?, Drug Discov. Today, 2003, vol. 8, no. 22, pp. 1035–1043.

    Article  CAS  PubMed  Google Scholar 

  50. Beske, O.E. and Goldbard, S., High-throughput cell analysis using multiplexed array technologies, Drug Discov. Today, 2002, vol. 7, no. 18, pp. 131–S135.

    Article  Google Scholar 

  51. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 2005, vol. 307, no. 5709, pp. 538–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, S.T., Zhang, X., and Wen, Y., Microbioreactors for high-throughput cytotoxicity assays, Curr. Opin. Drug Discov. Dev., 2008, vol. 11, no. 1, pp. 111–127.

    CAS  Google Scholar 

  53. Hunt, L., Jordan, M., De Jesus, M., and Wurm, F.M., GFP-expressing mammalian cells for fast, sensitive, noninvasive cell growth assessment in a kinetic mode, Biotechnol. Bioeng., 1999, vol. 65, no. 2, pp. 201–205.

    Article  CAS  PubMed  Google Scholar 

  54. Wolff, M., Wiedenmann, J., Nienhaus, G.U., Valler, M., and Heilker, R., Novel fluorescent proteins for highcontent screening, Drug Discov. Today, 2006, vol. 11, nos. 23–24, pp. 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  55. Xu, X., Gerard, A.L., Huang, B.C., Anderson, D.C., Payan, D.G., and Luo, Y., Detection of programmed cell death using fluorescence energy transfer, Nucleic Acid Res., 1998, vol. 26, no. 8, pp. 2034–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abraham, V.C., Taylor, D.L., and Haskins, J.R., High content screening applied to large-scale cell biology, Trends Biotechnol., 2004, vol. 22, no. 1, pp. 15–22.

    Article  CAS  PubMed  Google Scholar 

  57. Haney, S.A., LaPan, P., Pan, J., and Zhang, J., Highcontent screening moves to the front of the line, Drug Discov. Today, 2006, vol. 11, nos 19-20, pp. 889–894.

    Article  CAS  PubMed  Google Scholar 

  58. Girard, P., Jordan, M., Tsao, M., and Wurm, F.M., Small-scale bioreactor system for process development and optimization, Biochem. Eng. J., 2001, vol. 7, no. 2, pp. 117–119.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, X. and Yang, S.T., High-throughput 3-D cellbased proliferation and cytotoxicity assays for drug screening and bioprocess development, J. Biotechnol., 2011, vol. 151, no. 2, pp. 186–193.

    Article  CAS  PubMed  Google Scholar 

  60. Leclerc, E., Sakai, Y., and Fujii, T., Cell culture in 3-D microfluidic structure of PDMS, Biomed. Microdev., 2003, vol. 5, no. 2, pp. 109–114.

    Article  CAS  Google Scholar 

  61. Viravaidya, K., Sin, A., and Shuler, M.L., Development of a microscale cell culture analog to probe naphthalene toxicity, Biotechnol. Progr., 2004, vol. 20, no. 1, pp. 316–323.

    Article  CAS  Google Scholar 

  62. Hung, P.J., Lee, P.J., Sabounchi, P., Lin, R., and Lee, L.P., Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays, Biotechnol. Bioeng., 2005, vol. 89, no. 1, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  63. Su, X., Young, E.W., Underkofler, H.A., Kamp, T.J., January, C.T., and Beebe, D.J., Microfluidic cell culture and its application in high-throughput drug screening: Cardiotoxicity assay for hERG channels, J. Biomol. Screening, 2011, vol. 16, no. 1, pp. 101–111.

    Article  CAS  Google Scholar 

  64. Barbulovic-Nad, I., Au, S.H., and Wheeler, A.R., A microfluidic platform for complete mammalian cell culture, Lab Chip, 2010, vol. 10, no. 12, pp. 1536–1542.

    Article  CAS  PubMed  Google Scholar 

  65. Huh, D., Hamilton, G.A., and Ingber, D.E., From 3D cell culture to organs-on-chips, Trends Cell Biol., 2011, vol. 21, no. 12, pp. 745–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., and Ingber, D.E., Reconstituting organ-level lung functions on a chip, Science, 2010, vol. 328, no. 5986, pp. 1662–1668.

    Article  CAS  PubMed  Google Scholar 

  67. Inamdar, N.K. and Borenstein, J.T., Microfluidic cell culture models for tissue engineering, Curr. Opin. Biotechnol., 2011, vol. 22, no. 5, pp. 681–689.

    Article  CAS  PubMed  Google Scholar 

  68. Huh, D., Leslie, D.C., Matthews, B.D., Fraser, J.P., Jurek, S., Hamilton, G.A., Thorneloe, K.S., McAlexander, M.A., and Ingber, D.E., A human disease model of drug toxicity-induced pulmonary edema in a lungon- a-chip microdevice, Sci. Transl. Med., 2012, vol. 4, no. 159, p. 159.

    Article  Google Scholar 

  69. Khetani, S.R. and Bhatia, S.N., Microscale culture of human liver cells for drug development, Nat. Biotechnol., 2008, vol. 26, no. 1, pp. 120–126.

    Article  CAS  PubMed  Google Scholar 

  70. Bhatia, S.N., Balis, U.J., Yarmush, M.L., and Toner, M., Effect of cell-cell interactions in preservation of cellular phenotype: Cocultivation of hepatocytes and non-parenchymal cells, FASEB J., 1999, vol. 13, no. 14, pp. 1883–1900.

    CAS  PubMed  Google Scholar 

  71. Huh, D., Torisawa, Y.S., Hamilton, G.A., Kim, H.J., and Ingber, D.E., Microengineered physiological biomimicry: Organs-on-chips, Lab Chip, 2012, vol. 12, no. 12, pp. 2156–2164.

    Article  CAS  PubMed  Google Scholar 

  72. Ghaemmaghami, A.M., Hancock, M.J., Harrington, H., Kaji, H., and Khademhosseini, A., Biomimetic tissues on a chip for drug discovery, Drug Discov. Today, 2012, vol. 17, nos. 3–4, pp. 173–181.

    Article  CAS  PubMed  Google Scholar 

  73. Van der Meer, A.D. and van den Berg, A., Organs-onchips: Breaking the in vitro impasse, Integr. Biol. (Cambridge), 2012, vol. 4, no. 5, pp. 461–470.

    Article  Google Scholar 

  74. Esch, M.B., King, T.L., and Shuler, M.L., The role of body-on-a-chip devices in drug and toxicity studies, Annu. Rev. Biomed. Eng., 2011, vol. 13, pp. 55–72.

    Article  CAS  PubMed  Google Scholar 

  75. Eisenstein, M., Artificial organs: Honey, I shrunk the lungs, Nature, 2015, vol. 519, no. 7544, pp. S16–S18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Alpeeva.

Additional information

Original Russian Text © E.V. Alpeeva, A.F. Sidorenkova, E.A. Vorotelyak, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2017, Vol. 72, No. 4, pp. 187–198.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpeeva, E.V., Sidorenkova, A.F. & Vorotelyak, E.A. Overview of Cell Models: From Organs Cultured in a Petri Dish to Organs-on-Chips. Moscow Univ. Biol.Sci. Bull. 72, 159–168 (2017). https://doi.org/10.3103/S0096392517040010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392517040010

Keywords

Navigation