Skip to main content
Log in

Consequence of Gamma Radiation Induced Cytomixis during Microsporogenesis in Fennel Plant (Foeniculum vulgare Mill.)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Fennel is considered as a very important spice crop with powerful therapeutic potential. An improvement in this valuable crop, selected physical mutagen (Gamma irradiation) on the seeds with five selective doses viz., 50, 100, 150, 200 and 250 Gy for break genetic consistency in narrow genetic base in Fennel crop, remunerative phenomenon of syncytes was seen in some cases, where complete chromatin was transmitted to the recipient PMC, that generates dimorphic pollen grain. Such pollen grain with varying genetic content plays a significant role in the emergence of intraspecific polyploidization of species. A curious biological process which is often observed in microsporogenesis of higher plants like, development of syncytes, cytomixis between plant cells and due to this the creation of big pollen has evolutionary relevance. The cytomictic behaviour of Foeniculum vulgare Mill. has been reported in this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Barton, L.J., Wilmington, S.R., Martin, M.J., Skopec, H.M., Lovander, K.E., Pinto, B.S., and Geyer, P.K., Unique and shared functions of nuclear lamina LEM domain proteins in Drosophila, Genetics, 2014, vol. 197, pp. 653–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bellucci, M., Roscini, C., and Mariani, A., Cytomixis in pollen mother cells of Medicago sativa L, J. Hered., 2003, vol. 94, pp. 512–516.

    Article  CAS  PubMed  Google Scholar 

  3. Bhat, T.A., Parveen, S., and Khan, A.H., MMS-induced cytomixis in pollen mother cells of broad bean (Vicia faba L.), Turk. J. Bot., 2006, vol. 3, pp. 273–279.

    Google Scholar 

  4. Dwivedi, H. and Kumar, G., Induced syncyte formation via cytomixis in Trachyspermum ammi (L.) Sprague (Apiaceae), Caryologia, 2018, vol. 71, pp. 420–427.

    Article  Google Scholar 

  5. Falistocco, E., Tosti, N., and Falcinelli, M., Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes, J. Hered., 1995, vol. 86, pp. 448–453.

    Article  Google Scholar 

  6. Ghaffari, S.M., Occurrence of diploid and polyploid microspores in Sorghum bicolor (Poaceae) is the result of cytomixis, Afr. J. Biotechnol., 2006, vol. 5, pp. 1450–1453.

    Google Scholar 

  7. Guan, J.Z., Wang, J.J., Cheng, Z.H., Liu, Y., and Li, Z.Y., Cytomixis and meiotic abnormalities during microsporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata, Genet. Mol. Res., 2012, vol. 11, pp. 121–30.

    Article  PubMed  Google Scholar 

  8. Kaul, M.L., Male sterile gene action diversity in barley and pea, Nucleus, 1991, vol. 34, pp. 32–39.

    Google Scholar 

  9. Kaur, G.J. and Arora, D.S., Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi, BMC complementary and alternative medicine, BMC Complementary Altern. Med., 2009, vol. 9, p. 30.

    Article  Google Scholar 

  10. Kim, J.S., Oginuma, K., and Tobe, H., Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae): a pathway to infraspecific polyploidy, J. Plant Res., 2009, vol. 122, pp. 439–444.

    Article  PubMed  Google Scholar 

  11. Kornicke, M., Uber ortsveranderung von Zellkarnern SB, Niederrheinische Gesellschaft Natur- Heilkunde, 1901, vols. 14–25.

    Google Scholar 

  12. Kravchenko, L.N., Osobennosti meioza u pshenitsy i ee gibridov (Features of Meiosis in Wheat and Its Hybrids), Chisinau: Shtiintsa, 1997.

  13. Kravets, E.A., Nature, significance, and cytological consequences of cytomixis, Cytol. Genet., 2012, vol. 46, pp. 188–195.

    Article  Google Scholar 

  14. Kumar, G., Induced cytomixis in chickpea (Cicer arietinum L.), Nucleus, 2002, vol. 45, pp. 24–26.

    Google Scholar 

  15. Kumar, G. and Singh, S., Induced cytomictic crosstalk behaviour among micro-meiocytes of Cyamopsis tetragonoloba (L.) Taub. (cluster bean): Reasons and repercussions, Caryologia, 2020, vol. 73, no. 2, pp. 111–119.

    Google Scholar 

  16. Kumar, P., Singhal, V.K., and Kaur, D., Impaired male meiosis due to irregular synapsis coupled with cytomixis in a new diploid cytotype of Dianthus angulatus (Caryophyllaceae) from Indian cold deserts, Folia Geobot., 2012, vol. 47, pp. 59–68.

    Article  Google Scholar 

  17. Li, X.F., Song, Z.Q., Feng, D.S., and Wang, H.G., Cytomixis in Thinopyrum intermedium, Thinopyrum ponticum and its hybrids with wheat, Cereal Res. Commun., 2009, vol. 37, pp. 353–361.

    Article  Google Scholar 

  18. Liu, H., Guo, G., He, Y., and Zheng, G., Nuclear migration: Endless efforts toward unraveling its molecular apparatus, Chin. Sci. Bull., 2003, vol. 48, pp. 615–619.

    CAS  Google Scholar 

  19. Malallah, G.A. and Attia, T.A., Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae), Bot. J. Linn., 2003, vol. 143, pp. 169–175.

    Article  Google Scholar 

  20. Mendes-Bonato, A.B., Pagliarini, M.S., Silva, N., and Valle, C.B., Meiotic instability in invader plants of signal grass Brachiaria decumbens Stapf. (Gramineae), Genet. Mol. Biol., 2001, vol. 23, pp. 619–625.

    Google Scholar 

  21. Mursalimov, S.R. and Deineko, E.V., How cytomixis can form unreduced gametes in tobacco, Plant Syst. Evol., 2015, vol. 301, pp. 1293–1297.

    Article  CAS  Google Scholar 

  22. Mursalimov, S.R., Sidorchuk, Y.V., Zagorskaya, A.A., and Deineko, E.V., Migration of DNA-containing organelles between tobacco microsporocytes during cytomixis, Russ. J. Dev. Biol., vol. 49, pp. 159–165.

  23. Negrón-Ortiz, V., Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean Islands, Am. J. Bot., 2007, vol. 94, pp. 1360–1370.

    Article  PubMed  Google Scholar 

  24. Oktay, M., Gülçin, İ., and Küfrevioğlu, Ö.İ., Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts, LWT–Food Sci. Technol., 2003, vol. 36, pp. 263–271.

    Article  CAS  Google Scholar 

  25. Özbek, H., Uğraş, S., Dülger, H., Bayram, I., Tuncer, I., Öztürk, G., and Öztürk, A., Hepatoprotective effect of Foeniculum vulgare essential oil, Fitoterapia, 2003, vol. 74, pp. 317–319.

    Article  PubMed  Google Scholar 

  26. Pecrix, Y., Rallo, G., Folzer, H., Cigna, M., Gudin, S., and Le Bris, M., Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp., J. Exp. Bot., 2011, vol. 62, pp. 3587–3597.

    Article  CAS  PubMed  Google Scholar 

  27. Rana, P.K., Kumar, P., and Singhal, V.K., Spindle irregularities, chromatin transfer, and chromatin stickiness during male meiosis in Anemone tetrasepala (Ranunculaceae), Turk. J. Bot., 2013, vol. 37, pp. 67–176.

    Google Scholar 

  28. Sidorchuk, Y.V., Deineko, E.V., and Shumny, V.K., Peculiarities of cytomixis in pollen mother cells of transgenic tobacco plants (Nicotiana tabacum L.) with mutant phenotype, Cell Tissue Biol., 2007, vol. 1, pp. 570–576.

    Article  Google Scholar 

  29. Singhal, V.K. and Kumar, P., Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle), J. Biosci., vol. 33, pp. 371–380.

  30. Singhal, V., Rana, P., Kumar, P., and Kaur, D., Persistent occurrence of meiotic abnormalities in a new hexaploid cytotype of Thalictrum foetidum from Indian cold deserts, Biologia, 2011, vol. 66, pp. 458–464.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the Plant Genetics Laboratory, Department of Botany, University of Allahabad, for the important technical assistance and facilities. In addition, we are grateful to the National Botanical Research Institute (NBRI), Lucknow, India, for providing the gamma irradiation facility. Thanks are also due to Plant Genetics Laboratory members for their valuable suggestions.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moni Mishra.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Mishra, M. & Tripathi, K. Consequence of Gamma Radiation Induced Cytomixis during Microsporogenesis in Fennel Plant (Foeniculum vulgare Mill.). Cytol. Genet. 58, 46–52 (2024). https://doi.org/10.3103/S0095452724010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452724010109

Navigation