Skip to main content
Log in

5S Ribosomal DNA of Distantly Related Quercus Species: Molecular Organization and Taxonomic Application

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The genus Quercus (oak) is a widespread and economically important genus of tree plants. The intrageneric taxonomy of this group remains controversial due to widely distributed interspecific hybridization and convergent similarity of morphological traits. Further progress in this problem requires application of molecular methods. Taking into account that the comparison of 5S rDNA was successfully used in the molecular taxonomy of plants, we cloned and sequenced this genomic region for representatives of three taxo-nomically distant Quercus species: Q. acutissima (sect. Cerris) and Q. glauca (sect. Cyclobalanopsis) from East Asia and Q. texana (sect. Lobatae) from North America. We also identified 5S rDNA in the genome sequences available in the Genbank database for North American species Q. lobata (sect. Quercus) and for the related genus Castanea. It was found that the 5S rDNA repeated units demonstrate a high level of intragenomic sequence similarity in representatives of genus Quercus. The potential external elements of the 5S rDNA promoter differ from those in other families of dicotyledonous plants. The results of the comparative sequence analysis of the 5S rDNA intergenic spacer region support the existing taxonomy of the genus and indicate the isolated position of section Cyclobalanopsis, which can be considered as a separate subgenus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Govaerts, R. and Frodin, D.G., World checklist and bibliography of Fagales, Kew, UK: Royal Botanic Gardens, 1998.

    Google Scholar 

  2. Nixon, K.C., Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests, in Ecology and Conservation of Neotropical Montane Oak Forests, Berlin, Heidelberg: Springer, 2006, pp. 3–13. https://doi.org/10.1007/3-540-28909-7_1

    Google Scholar 

  3. Deng, M., Jiang, X.L., Hipp, A.L., Manos, P.S., and Hahn, M., Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia, Mol. Phylogenet. Evol., 2018, vol. 119, pp. 170–181. https://doi.org/10.1016/j.ympev.2017.11.003

    Article  PubMed  Google Scholar 

  4. Denk, T. and Grimm, G.W., The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers, Taxon, 2010, vol. 59, no. 2, pp. 351–366. https://doi.org/10.1002/tax.592002

    Article  Google Scholar 

  5. Simeone, M.C., Grimm, G.W., Papini, A., Vessella, F., Cardoni, S., Tordoni, E., Piredda, R., Franc, A., and Denk, T., Plastome data reveal multiple geographic origins of Quercus group Ilex,Peer. J, 2016, vol. 4. e1897. https://doi.org/10.7717/peerj.1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Denk, T., Grimm, G.W., Manos, P.S., Deng, M., and Hipp, A.L., An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns, in Oaks Physiological Ecology: Exploring the Functional Diversity of Genus Quercus L., Cham: Springer, 2017, pp. 13–38. https://doi.org/10.1007/978-3-319-69099-5_2

    Google Scholar 

  7. Van Valen, L., Ecological species, multispecies, and oaks, Taxon, 1976, vol. 25, nos. 2/3, pp. 233–239. https://doi.org/10.2307/1219444

    Article  Google Scholar 

  8. Hubert, F., Grimm, G.W., Jousselin, E., Berry, V., Franc, A., and Kremer, A., Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus,Syst. Biodivers., 2014, vol. 12, no. 4, pp. 405–423. https://doi.org/10.1080/14772000.2014.941037

    Article  Google Scholar 

  9. Pham, K.K., Hipp, A.L., Manos, P.S., and Cronn, R.C., A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny, Genome, 2017, vol. 60, no. 9, pp. 720–732. https://doi.org/10.1139/gen-2016-0191

    Article  PubMed  Google Scholar 

  10. McVay, J.D., Hauser, D., Hipp, A.L., and Manos, P.S., Phylogenomics reveals a complex evolutionary history of lobed-leaf white oaks in western North America, Genome, 2017, vol. 60, no. 9, pp. 733–742. https://doi.org/10.1139/gen-2016-0206

    Article  PubMed  Google Scholar 

  11. Simeone, M.C., Cardoni, S., Piredda, R., Imperatori, F., Avishai, M., Grimm, G.W., and Denk, T., Comparative systematics and phylogeography of Quercus section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation, Peer J., 2018, vol. 6. e5793. https://doi.org/10.7717/peerj.5793

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hipp, A.L., Manos, P.S., Hahn, M., Avishai, M., Bodénes, C., Cavender-Bares, J., Crowl, A., Deng, M., Denk, T., Fitz-Gibbon, S., Gailing, O., González-Elizondo, M.S., González-Rodríguez, A., Grimm, G.W., Jiang, X-L., Kremer, A., Lesur, I., McVay, J.D., Plomion, C., Rodríguez-Correa, H., Schulze, E-D., Simeone, M.C., Sork, V.L., and Valencia-Avalos, S., Genomic landscape of the global oak phylogeny, bioRxiv, 2019, p. 587253. https://doi.org/10.1101/587253

  13. Barron, E., Averyanova, A., Kvacek, Z., Momohara, A., Pigg, K.B., Popova, S., Postigo-Mijarra, J.M., Tiffney, B.H., Utescher, T., and Zhou, Z.K., The fossil history of Quercus, in Oaks Physiological Ecology: Exploring the Functional Diversity of Genus Quercus L., Cham: Springer, 2017, pp. 39–105. https://doi.org/10.1007/978-3-319-69099-5_3

    Google Scholar 

  14. Chengjiu, H., Yongtian, Z., and Bartholomew, B., Fagaceae, in Flora of China, Zheng-Yi, W. and Raven, P., Eds., Beijing: Science Press, 1999, vol. 4, pp. 300–400.

    Google Scholar 

  15. Grant, V., Plant Speciation, New York: Columbia Univ. Press, 1981, 2nd ed.

    Book  Google Scholar 

  16. Soltis, P.S. and Soltis, D.E., The role of hybridization in plant speciation, Ann. Rev. Plant Biol., 2009, vol. 60, pp. 561–588. https://doi.org/10.1146/annurev.arplant.043008.092039

    Article  CAS  PubMed  Google Scholar 

  17. Volkov, R.A., Medina, F.J., Zentgraf, U., and Hemleben, V., Molecular cell biology: organization and molecular evolution of rDNA, nucleolar dominance, and nucleolus structure, Progr. Bot., 2004, vol. 65, pp. 106–146. https://doi.org/10.1007/978-3-642-18819-0_5

    Article  CAS  Google Scholar 

  18. Volkov, R.A., Zanke, C., Panchuk, I.I., and Hemleben, V., Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding, Theor. Appl. Genet., 2001, vol. 103, no. 8, pp. 1273–1282. https://doi.org/10.1007/s001220100670

    Article  CAS  Google Scholar 

  19. Saini, A. and Jawali, N., Molecular evolution of 5S rDNA region in Vigna subgenus Ceratotropis and its phylogenetic implications, Plant Syst. Evol., 2009, vol. 280, nos. 3–4, p. 187. https://doi.org/10.1007/s00606-009-0178-4

    Article  CAS  Google Scholar 

  20. Calio, M.F., Lepis, K.B., Pirani, J.R., and Struwe, L., Phylogeny of Helieae (Gentianaceae): Resolving taxonomic chaos in a Neotropical clade, Mol. Phylogenet. Evol., 2017, vol. 106, pp. 192–208. https://doi.org/10.1016/j.ympev.2016.09.013

    Article  PubMed  Google Scholar 

  21. Porebski, S., Bailey, L.G., and Baum, B.R., Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components, Plant Mol. Biol. Rep., 1997, vol. 15, no. 1, pp. 8–15. https://doi.org/10.1007/BF02772108

    Article  CAS  Google Scholar 

  22. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, no. 3, pp. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  23. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stamatakis, A., RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, no. 9, pp. 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sork, V.L., Squire, K., Gugger, P.F., Steele, S.E., Levy, E.D., and Eckert, A.J., Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata,Am. J. Bot., 2016, vol. 103, no. 1, pp. 33–46. https://doi.org/10.1007/s11295-016-0975-1

    Article  CAS  PubMed  Google Scholar 

  27. Tynkevich, Y.O. and Volkov, R.A., Structural organization of 5S ribosomal DNA in Rosa rugosa,Cytol. Genet., 2014, vol. 48, no. 1, pp. 3–9. https://doi.org/10.3103/S0095452714010095

    Article  Google Scholar 

  28. Tynkevich, Y.O., Nevelska, A.O., Chorney, I.I., and Volkov, R.A., Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus,Bull. Vavilov Soc. Genet. Breed. Ukr., 2015, vol. 13, no. 1, pp. 81–87.

    Google Scholar 

  29. Rusak, O.O., Petrashchuk, V.I., Panchuk, I.I., and Volkov, R.A., Molecular organization of 5S rDNA in two Ukrainian populations of Sycamore (Acer pseudoplatanus), Bull. Vavilov Soc. Genet. Breed. Ukr., 2016, vol. 14, no. 2, pp. 216–220.

    Google Scholar 

  30. Shelyfist, A.Y., Tynkevich, Y.O., and Volkov, R.A., Molecular organization of 5S rDNA of Brunfelsia uniflora (Pohl.) D. Don., Bull. Vavilov Soc. Genet. Breed. Ukr., 2018, vol. 16, no. 1, pp. 61–68.

    Google Scholar 

  31. Douet, J. and Tourmente, S., Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis,Heredity, 2007, vol. 99, pp. 5–13. https://doi.org/10.1038/sj.hdy.6800964

    Article  CAS  PubMed  Google Scholar 

  32. Simon, L., Rabanal, F.A., Dubos, T., Oliver, C., Lauber, D., Poulet, A., Vogt, A., and Mandlbauer, A., Le Goff S., Sommer A., Duborjal H., Tatout C., and Probst, A.V., Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana,Nucleic Acids Res., 2018, vol. 46, no. 6, pp. 3019–3033. https://doi.org/10.1093/nar/gky163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Volkov, R.A., Panchuk, I.I., Borisjuk, N.V., Hosiawa-Baranska, M., Maluszynska, J., and Hemleben, V., Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna,BMC Plant Biol., 2017, vol. 17, no. 1, pp. 1–15. https://doi.org/10.1186/s12870-017-0978-6

    Article  CAS  Google Scholar 

  34. Ishchenko, O.O., Panchuk, I.I., Andreev, I.O., Kunakh, V.A., and Volkov, R.A., Molecular organization of 5S ribosomal DNA of Deschapmpsia antarctica,Cytol. Genet., 2018, vol. 52, no. 6, pp. 416–421. https://doi.org/10.3103/S0095452719010146

    Article  Google Scholar 

  35. Volkov, A.R. and Panchuk, I.I., 5S rDNA of Dactylus glomerata (Poaceae): molecular organization and taxonomic application, Bull. Vavilov Soc. Genet. Breed. Ukr., 2014, vol. 12, no. 1, pp. 3–11.

    Google Scholar 

  36. Ishchenko, O.O. and Panchuk, I.I., Molecular organization of 5S rDNA of perennial ryegrass Lolium perenne L., Bull. Vavilov Soc. Genet. Breed. Ukr., 2018, vol. 16, no. 2, pp. 166–173.

    Google Scholar 

  37. Garcia, S., Panero, J.L., Siroky, J., and Kovarik, A., Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family, BMC Plant Biol., 2010, vol. 10, no. 1, pp. 176. https://doi.org/10.1186/1471-2229-10-176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamayo-Ordonez, Y.J., Narváez-Zapata, J.A., Tamayo-Ordonez, M.C., and Sánchez-Teyer, L.F., Retroelements and DNA methylation could contribute to diversity of 5S rDNA in Agave L., J. Mol. Evol., 2018, vol. 86, no. 6, pp. 404–423. https://doi.org/10.1007/s00239-018-9856-6

    Article  CAS  PubMed  Google Scholar 

  39. Ribeiro, T., Loureiro, J., Santos, C., and Morais-Cecilio, L., Evolution of rDNA FISH patterns in the Fagaceae, Tree Genet. Genomes, 2011, vol. 7, no. 6, pp. 1113–1122. https://doi.org/10.1007/s11295-011-0399

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to Prof. Edith Stabentheiner (University of Graz, Austria) for the provided plant material.

Funding

The research was supported by the Ministry of Education and Science of Ukraine (grant no. 0118U000137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Volkov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

ADDITIONAL INFORMATION

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tynkevich, Y.O., Volkov, R.A. 5S Ribosomal DNA of Distantly Related Quercus Species: Molecular Organization and Taxonomic Application. Cytol. Genet. 53, 459–466 (2019). https://doi.org/10.3103/S0095452719060100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452719060100

Keywords:

Navigation