Advertisement

Cytology and Genetics

, Volume 52, Issue 1, pp 40–45 | Cite as

Peculiarities of modification by astaxanthin of radiation-induced damages in the genome of human blood lymphocytes exposed in vitro on different stages of the mitotic cycle

  • D. A. KurinnyiEmail author
  • S. R. Rushkovsky
  • O. M. Demchenko
  • M. A. Pilinska
Article

Abstract

The features of astaxanthin impact (20 μg/mL) in the culture of human blood lymphocytes exposed to γ-radiation (1.0 Gy) on the G0, S, and G2 phases of the cell cycle were studied using Comet assay. Decrease in the level of DNA damages (Tail Moment index) under astaxanthin influence on lymphocytes irradiated in all stages of cell division was established, while, as a result of previous cytogenetic investigations, lack of the modifying action of astaxanthin after irradiation of cells in the G2 stage and radioprotective effect in the G0 stage of the mitotic cycle had been revealed. In G0 phase, the activation of the processes of apoptosis by astaxanthin in irradiated cells with high levels of genomic damages was found. The obtained data demonstrate that astaxanthin has a powerful radioprotective potential, mainly due to its apoptogenic properties.

Keywords

culture of human peripheral blood lymphocytes gamma-irradiation astaxanthin Comet assay DNA injuries apoptosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azqueta, A. and Collins, A.R., Carotenoids and DNA damage, Mutat. Res., 2012, vol. 733, nos. 1–2, pp. 4–13.CrossRefPubMedGoogle Scholar
  2. 2.
    Nishida, Y., Yamashita, E., and Miki, W., Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system, Carotenoid Sci., 2007, vol. 11, pp. 16–20.Google Scholar
  3. 3.
    Ambati, R.R., Phang, S.M., Ravi, S., and Aswathanarayana, R.G., Astaxanthin: sources, extraction, stability, biological activities and its commercial applications, Mar. Drugs, 2014, vol. 12, no. 1, pp. 128–152.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lin, K.H., Lin, K.C., Lu, W.J., Thomas, P.A., Jayakumar, T., and Sheu, J.R., Astaxanthin, a carotenoid, stimulates immune responses by enhancing IFN-γ and IL-2 secretion in primary cultured lymphocytes in vitro and ex vivo, Int. J. Mol. Sci., 2015, vol. 17, no. 1. doi 10.3390/ijms17010044Google Scholar
  5. 5.
    Ohno, T., Shimizu, M., Shirakami, Y., Miyazaki, T., Ideta, T., Kochi, T., Kubota, M., Sakai, H., Tanaka, T., and Moriwaki, H., Preventive effects of astaxanthin on diethylnitrosamine-induced liver tumorigenesis in C57/BL/KsJ-db/db obese mice, Hepatol. Res., 2016, vol. 46, no. 3, pp. 201–209.CrossRefGoogle Scholar
  6. 6.
    Rao, A.R., Sindhuja, H.N., Dharmesh, S.M., Sankar, K.U., Sarada, R., and Ravishankar, G.A., Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis, J. Agric. Food Chem., 2013, vol. 61, no. 16, pp. 3842–3851.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang, X., Zhao, W.E., Hu, L., Zhao, L., and Huang, J., Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARgamma) in K562 cancer cells, Arch. Biochem. Biophys., 2011, vol. 512, no. 1, pp. 96–106.CrossRefPubMedGoogle Scholar
  8. 8.
    Pilinska, M.A., Eurinnyi, D.A., Rushkovsky, S.R., and Dybska, I.B., The impact of astaxanthin on radiationinduced chromosome aberrations in human peripheral blood lymphocytes in vitro, Visnyk Ukr. Tovar. Genet. Selekts., 2016, vol. 14, no. 1, pp. 52–57.Google Scholar
  9. 9.
    Pilinska, M.A., Eurinnyi, D.A., Rushkovsky, S.R., and Dybska, I.B., Genoprotective properties of astaxanthin revealed by ionizing radiation exposure in vitro on human peripheral blood lymphocytes, Probl. Radiat. Med. Radiobiol., 2016, vol. 21, pp. 141–148.Google Scholar
  10. 10.
    Kurinnyi, D.A., Rushkovsky, S.R., Dybska, O.B., Dubrovina, G.V., and Pilinska, M.A., Astaxanthin modifies clastogenic effects of ionizing radiation in vitro in peripheral blood lymphocytes of the persons recovered from acute radiation sickness, Exp. Oncol., 2016, vol. 38, no. 4, pp. 280–282.Google Scholar
  11. 11.
    Kurinnyi, D.A., Rushkovsky, S.R., and Pilinska, M.A., The lack of modifying effect of astaxanthin on cytogenetic effects in irradiated in vitro human peripheral blood lymphocytes on stage G2 of the cell cycle, Dop. Nac. Akad. Nauk Ukraine, 2017, no. 4, pp. 91–95.CrossRefGoogle Scholar
  12. 12.
    Little, J.B., Genomic instability and radiation, J. Radiol. Prot., 2002, vol. 23, no. 2, pp. 173–181.CrossRefGoogle Scholar
  13. 13.
    Obe, G. and Durante, M., DNA double strand breaks and chromosomal aberrations, Cytogenet. Genome Res., 2010, vol. 128, nos. 1–3, pp. 8–16.CrossRefPubMedGoogle Scholar
  14. 14.
    Iliakis, G., Wang, H., Perrault, A.R., Boecker, W., Rosidi, B., Windhofer, F., Wu, W., Guan, J., Terzoudi, G., and Pantelias, G., Mechanisms of DNA double strand break repair and chromosome aberration formation, Cytogenet. Genome Res., 2004, vol. 104, nos. 1–4, pp. 14–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Olive, P.L. and Banath, J.P., The comet assay: a method to measure DNA damage in individual cells, Nat. Protoc., 2006, vol. 1, no. 1, pp. 23–29.CrossRefPubMedGoogle Scholar
  16. 16.
    Liao, W., McNut, M.A., and Zhu, W.G., The comet assay: a sensitive method for detecting DNA damage in individual cells, Methods, 2009, vol. 48, no. 1, pp. 46–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Pedan, L.R. and Pilinska, M.A., Assessment of the stability of chromosomes of peripheral blood lymphocytes of people affected by the factors of the Chernobyl accident, through testing mutagenic burden in vitro, Dop. Nat. Akad. Nauk Ukraine, 2004, vol. 5, pp. 175–179.Google Scholar
  18. 18.
    Afanasieva, K., Chopei, M., Zazhytska, M., Vikhreva, M., and Sivolob, A., DNA loop domain organization as revealed by single-cell gel electrophoresis, Biochim. Biophys. Acta, 2013, vol. 1833, no. 12, pp. 3237–3244.CrossRefPubMedGoogle Scholar
  19. 19.
    Afanasieva, K., Zazhytska, M., and Sivolob, A., Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments, Electrophoresis, 2010, vol. 31, pp. 512–519.CrossRefPubMedGoogle Scholar
  20. 20.
    Gyori, B.M., Venkatachalam, G., Thiagarajan, P.S., Hsu, D., and Clement, M., OpenComet: an automated tool for comet assay image analysis, Redox Biol., 2014, vol. 9, no. 2, pp. 457–465.CrossRefGoogle Scholar
  21. 21.
    Afanasieva, K., Chopei, M., Lozovik, A., Semenova, A., Lukash, L., and Sivolob, A., DNA loop domain organization in nucleoids from cells of different types, Biochem. Biophys. Res. Commun., 2017, vol. 483, no. 1, pp. 142–146.CrossRefPubMedGoogle Scholar
  22. 22.
    Atramentova, L.A., Dizain i statistika (Design and Statistics), Kharkov: NTMT, 2014.Google Scholar
  23. 23.
    Liu, X., Song, M., Gao, Z., Cai, X., Dixon, W., Chen, X., Cao, Y., and Xiao, H., Stereoisomers of astaxanthin inhibit human colon cancer cell growth by inducing G2/M cell cycle arrest and apoptosis, J. Agric. Food Chem., 2016, vol. 64, no. 41, pp. 7750–7759.CrossRefGoogle Scholar
  24. 24.
    Song, X.D., Zhang, J.J., Wang, M.R., Liu, W.B., Gu, X.B., and Lv, C.J., Astaxanthin induces mitochondria- mediated apoptosis in rat hepatocellular carcinoma CBRH-7919 cells, Biol. Pharm. Bull., 2011, vol. 34, no. 6, pp. 839–844.CrossRefPubMedGoogle Scholar
  25. 25.
    Roser, S., Pool-Zobel, B.L., and Rechkemmer, G., Contribution of apoptosis to responses in the comet assay, Mutat. Res., 2001, vol. 497, nos. 1–2, pp. 169–175.CrossRefPubMedGoogle Scholar
  26. 26.
    Von Sonntag, C., Free-Radical-Induced DNA Damage and Its Repair. A Chemical Perspective, Springer, 2006.CrossRefGoogle Scholar
  27. 27.
    Kim, J.H., Park, J.J., Lee, B.J., Joo, M.K., Chun, H.J., Lee, S.W., and Bak, Y.T., Astaxanthin inhibits proliferation of human gastric cancer cell lines by interrupting cell cycle progression, Gut Liver, 2016, vol. 10, no. 3, pp. 369–374.PubMedGoogle Scholar
  28. 28.
    Belloni, P., Meschini, R., Czene, S., Harms-Ringdahl, M., and Palitti, F., Studies on radiation-induced apoptosis in G0 human lymphocytes, Int. J. Radiat. Biol., 2005, vol. 81, no. 8, pp. 587–599.CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • D. A. Kurinnyi
    • 1
    Email author
  • S. R. Rushkovsky
    • 2
  • O. M. Demchenko
    • 1
  • M. A. Pilinska
    • 1
  1. 1.State Institution “National Research Center for Radiation Medicine,”National Academy of Medical Sciences of UkraineKyivUkraine
  2. 2.Educational and Research Center “Institute of Biology and Medicine,”Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations