Skip to main content
Log in

Callose: Localization, functions, and synthesis in plant cells

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Callose plays an important role in fragmoplast formation at cytokinesis and differentiation of pores in the phloem, as well as within the courses of microsporogenesis, functioning of stomata closure cells, and protection of plant cells from biotic and abiotic stresses. Special attention is given to consideration of callose functions and its synthesis. Callose synthase is activated by the glucosides, polyamines, calcium ions, magnesium ions, manganese ions, and abscisic acid. The callose synthase gene polymorphism (AtCalS1-AtCalS12) is related to cell growth, tissue differentiation, and cell response to stress as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke, A.E. and Stone, B.A., Chemistry and biochemistry of β-1-3-glucans, Rev. Pure Appl. Chem., 1963, vol. 13, pp. 134–156.

    CAS  Google Scholar 

  2. Hong, Z., Delauney, A.J., and Verma, D., A cell plate specific callose synthase and its interaction with phragmoplastin, Plant Cell, 2001, vol. 13, no. 4, pp. 755–768.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Piršelová, B., Mistriková, V., Libantová, J., et al., Study on metal-triggered callose deposition in roots of maize and soybean, Biologia, 2012, vol. 267, no. 4, pp. 1–8.

    Google Scholar 

  4. Chen, X.Y. and Kim, J.Y., Callose synthesis in higher plants, Plant Signal Behav., 2009, vol. 4, no. 6, pp. 489–492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cifuentes, C., Bulone, V., and Emons, A.M.C., Biosynthesis of callose and cellulose by detergent extracts of tobacco cell membranes and quantification of the polymers synthesized in vitro, J. Integr. Plant Biol., 2010, vol. 52, no. 2, pp. 221–233.

    Article  CAS  PubMed  Google Scholar 

  6. Wissemeier, A.H. and Horst, W.J., Effect of calcium supply on aluminium-induced callose formation, its distribution and persistence in roots of soybean (Glycine max (L.) Merr.), J. Plant Physiol., 1995, vol. 145, no. 4, pp. 470–476.

    Article  CAS  Google Scholar 

  7. Sivaguru, M. Fujiwara, T., et al., Aluminum-induced 1-3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata: a new mechanism of aluminum toxicity in plants, Plant Physiol., 2000, vol. 124, no. 3, pp. 991–1006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Vaughn, K.C., Talbot, M.J., Offler, C.E., and McCurdy, D.W., Wall ingrowths in epidermal transfer cells of Vicia faba cotyledons are modified primary walls marked by localized accumulations of arabinogalactan proteins, Plant Cell Physiol., 2007, vol. 48, no. 1, pp. 159–168.

    Article  CAS  PubMed  Google Scholar 

  9. Chou, ChuM. and Harberd, D.J., Note on visual distinction of fluorescent callose of pollen tubes and sieve tubes in stylar tissue of Brassica and its allies, Euphytica, 1970, vol. 19, no. 3, pp. 379–381.

    Article  Google Scholar 

  10. Xie, B. and Hong, Z., Unplugging the callose plug from sieve pores, Plant Signal Behav., 2011, vol. 6, no. 4, pp. 491–493.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Verma, D.P.S. and Hong, Z., Plant callose synthase complexes, Plant. Mol. Biol., 2001, vol. 47, no. 6, pp. 693–701.

    Article  CAS  PubMed  Google Scholar 

  12. Aidemark, M., Andersson, C.-J., Rasmusson, A.G., and Widell, S., Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells, BMC Plant Biol., 2009, vol. 9, no. 27, pp. 1–13.

    Google Scholar 

  13. Hong, Z., Zhang, Z., Olson, J.M., and Verma, D.P.S., A novel UDPglucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate, Plant Cell, 2001, vol. 13, no. 4, pp. 769–779.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rinne, P.L.H., Kaikuranta, P.M., and van der Schoot, C., The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy, Plant J., 2001, vol. 26, no. 3, pp. 249–264.

    Article  CAS  PubMed  Google Scholar 

  15. Ruan, Y.L., Xu, S.M., White, R., and Furbank, R.T., Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover, Plant Physiol., 2004, vol. 136, no. 4, pp. 4104–4113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Krabel, D., Eschrich, W., Wirth, S., and Wolf, G., Callase(1,3-β-D-glucanase) activity during spring reactivation in deciduous trees, Plant Sci., 1993, vol. 93, no. 1, pp. 19–23.

    Article  CAS  Google Scholar 

  17. Zavaliev, R., Ueki, S., Epel, B.L., and Citovsky, V., Biology of callose (β-1,3-glucan) turnover at plasmodesmata, Protoplasma, 2011, vol. 248, no. 1, pp. 117–130.

    Article  CAS  PubMed  Google Scholar 

  18. Apostolakos, P. and Galatis, B., Probable cytoskeleton involvement in stomatal pore formation in Asplenium nidus L., Protoplasma, 1998, vol. 203, nos. 1/2, pp. 48–57.

    Article  Google Scholar 

  19. Sack, F.D., The development and structure of stomata, in Stomatal Function, Zeiger, E., Farquhar, G.D., and Cowan, I.R., Eds., Stanford: Univ. Press, 1987, pp. 59–89.

    Google Scholar 

  20. Peterson, R.L. and Hambleton, S., Guard cell ontogeny in leaf stomata of the fern Ophioglossum petiolatum, Can. J. Bot., 1978, vol. 56, no. 22, pp. 2836–2852.

    Article  Google Scholar 

  21. Apostolakos, P., Livanos, P., Nikolakopoulou, T.L., and Galatis, B., Callose implication in stomatal opening and closure in the fern Asplenium nidus, New Phytol., 2010, vol. 186, no. 3, pp. 623–635.

    Article  CAS  PubMed  Google Scholar 

  22. Vijayaraghvan, M.R. and Shukla, A.K., Absent of callose around the microspore tetrad and poorly developed exine in Pergularia daemia, Ann. Bot., 1977, vol. 41, no. 4, pp. 923–926.

    Google Scholar 

  23. Pacini, E., Cell biology of anther and pollen development, in Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants, Amsterdam: Kluwer, 1994, pp. 83–96.

    Google Scholar 

  24. Popova, A.F., Ivanenko, G.F., Ustinova, A.Yu., and Zaslavsky, V.A., Localization of callose in microspores and pollen grains in Sium latifolium L. plants in different water regimes, Cytol. Genet., 2008, vol. 42, no. 6, pp. 363–368.

    Article  Google Scholar 

  25. Dybos, T., Gyeldira, M., Dubois, J., and Wasseur, J., Direct somatic embryogenesis in root of Cichorium: is callose an early marker? Ann. Bot., 1990, vol. 65, no. 5, pp. 539–545.

    Google Scholar 

  26. Vithanage, H.I.M.V., Gleeson, P.A., and Clarke, A.E., The nature of callose produced during self-pollination in Secale cereale, Planta, 1980, vol. 148, no. 5, pp. 498–509.

    Article  CAS  PubMed  Google Scholar 

  27. Yim, Kyu-Ock and Bradford, K.J., Callose deposition is responsible for apoplastic semipermeability of the endosperm envelope of muskmelon seeds, Plant Physiol., 1998, vol. 118, no. 1, pp. 83–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. McNairn, R.B., Phloem translocation and heatinduced callose formation infield-grown Gossypium hirsutum L., Plant Physiol., 1972, vol. 50, no. 3, pp. 366–370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Furch, A.C.U., Hafke, J.B., Schulz, A., and van Bel, A.J.E., Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba, J. Exp. Bot., 2007, vol. 58, no. 11, pp. 2827–2838.

    Article  CAS  PubMed  Google Scholar 

  30. Bilska, A. and Sowinski, P., Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition on photosynthesis, Ann. Bot., 2010, vol. 106, no. 5, pp. 675–686.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Albrecht, G. and Mustroph, A., Sucrose utilization via invertase and sucrose synthase with respect to accumulation of cellulose and callose synthesis in wheat roots under oxygen deficiency, Russ. J. Plant Physiol., 2003, vol. 50, no. 6, pp. 813–820.

    Article  CAS  Google Scholar 

  32. Horst, W.J., Piischel, A.K., and Schmohl, N., Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize, Plant Soil, 1997, vol. 192, no. 1, pp. 23–30.

    Article  CAS  Google Scholar 

  33. Samardakiewicz, S., Strawinski, P., and Wozny, A., The influence of lead on callose formation in roots of Lemna minor L., Biol. Plant., 1996, vol. 38, no. 3, pp. 463–467.

    Article  CAS  Google Scholar 

  34. Krzesłowska, M., Lenartowska, M., Mellerowicz, E.J., et al., Pectinous cell wall thickenings formation—a response of moss protonemata cells to Pb environment, Exp. Bot., 2009, vol. 65, no. 1, pp. 119–131.

    Article  Google Scholar 

  35. de Cnodder, T., Vissenberg, K., van der Straeten, D., and Berbelen, J.P., Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminicyclopropane-1-carboxylic acid: a matter of apoplastic reactions, New Phytol., 2005, vol. 168, no. 3, pp. 541–550.

    Article  PubMed  Google Scholar 

  36. Stass, A. and Horst, W.J., Effect of aluminum on membrane properties of soybean (Glycine max) cells in suspension culture, Plant Soil, 1995, vol. 171, no. 1, pp. 113–118.

    Article  CAS  Google Scholar 

  37. Krzeslowska, M., The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy, Acta Physiol. Plant., 2011, vol. 33, no. 1, pp. 35–51.

    Article  CAS  Google Scholar 

  38. Wissemeier, A.H., Diening, A., Hergenröder, A., et al., Callose formation as parameter for assessing genotypical plant tolerance of aluminium and manganese, Plant Soil, 1992, vol. 14, no. 1, pp. 67–75.

    Article  Google Scholar 

  39. Bacic, A., Harris, P.J., and Stone, B.A., The Biochemistry of Plants, Vol. 14: Carbohydrates, Priess, J., Ed., San Diego: Acad. Press, 1988.

  40. Nakashima, J., Laosinchai, W., Cui, X., and Brown, R.M., New insight into the mechanism of cellulose and callose biosynthesis: proteases may regulate callose biosynthesis upon wounding, Cellulose, 2003, vol. 10, no. 4, pp. 369–389.

    Article  CAS  Google Scholar 

  41. Saheed, S.A., Botha, C.E.J., Liu, L., and Jonsson, L., Comparison of structural damage caused by Russian wheat aphid (Diuraphis noxia) and Brid cherry-oat aphid (Rhopalosiphum padi) in a susceptible barley cultivar, Hordeum vulgare cv. Clipper, Physiol. Plant., 2007, vol. 129, no. 2, pp. 429–435.

    Article  CAS  Google Scholar 

  42. Poliakovskiy, S.O. and Dmitriev, O.P., Study of priming for callose accumulation in Allium cepa during treatment with biotic inducers, Cytol. Genet., 2011, vol. 45, no. 4, pp. 245–248.

    Article  Google Scholar 

  43. Dmitriev, A.P., Fitoaleksiny i ikh rol’ v ustoichivosti rastenii (Phytoalexins and Their Role in Plant Resistance), Kyiv: Nauk. Dumka, 2000.

    Google Scholar 

  44. Yun, M.H., Torres, P.S., El Oirdi, M., et al., Xanthan induces plant susceptibility by suppressing callose deposition, Plant Physiol., 2006, vol. 141, no. 1, pp. 178–187.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Jacobs, A.K., Lipka, V., Burton, R.A., et al., An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation, Plant Cell, 2003, vol. 15, no. 11, pp. 2503–2513.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kus-nierczyk, A., Winge, P., Jrstad, T.S., et al., Towards global understanding of plant defense against aphids-timing and dynamics of early Arabidopsis defense responses to cabbage aphid (Brevicoryne brassicae) attack, Plant Cell Environ., 2008, vol. 31, no. 8, pp. 1097–1115.

    Article  CAS  Google Scholar 

  47. Hofmann, J., Youssef-Banora, M., Almeida-Engler de, J., Grundler, F.M.W., The role of callose deposition along plasmodesmata in nematode feeding sites, Mol. Plant Microbe Interact., 2010, vol. 23, no. 5, pp. 549–557.

    Article  CAS  PubMed  Google Scholar 

  48. Li, W., Zhao, Y., Liu, C., et al., Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus, Plant Cell Rep., 2012, vol. 31, no. 5, pp. 905–916.

    Article  CAS  PubMed  Google Scholar 

  49. Luna, E., Pastor, V., Robert, J., et al., Callose deposition: a multifaceted plant defense response, Mol. Plant Microbe Interact., 2011, vol. 24, no. 2, pp. 183–193.

    Article  CAS  PubMed  Google Scholar 

  50. Mathieu, Y., Kurkdjian, A., Xia, H., et al., Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells, Plant J., 1991, vol. 1, no. 3, pp. 333–343.

    Google Scholar 

  51. Currier, H.B., Callose substance in plant cells, Am. J. Bot., 1957, vol. 44, no. 6, pp. 478–488.

    Article  Google Scholar 

  52. Taylor, L.P., Pollen germination and tube growth, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 8, pp. 461–491.

    Article  Google Scholar 

  53. Parre, E. and Geitmann, A., More than a leak sealant. The mechanical properties of callose in pollen tubes, Plant Physiol., 2005, vol. 137, no. 1, pp. 274–286.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kursanov, A.L., Transport assimilyatov v rastenii (Transport of Assimilates in Plants), Moscow: Nauka, 1976.

    Google Scholar 

  55. Kauss, H. and Jeblick, W., Induced Ca2+ uptake and callose synthesis in suspension-cultured cells of Catharanthus reseus are decreased by the protein phosphatase inhibitor okadaic acid, Physiol. Plant., 1991, vol. 81, no. 3, pp. 309–312.

    Article  CAS  Google Scholar 

  56. Kauss, H., Callose biosynthesis as a Ca2+-regulated process and possible relations in the induction of other metabolic changes, J. Cell Sci., 1985, vol. 79, no. 3, pp. 89–103.

    Article  Google Scholar 

  57. Marrow, D.L. and Lucas, W.J., (1 → 3)-β-D-glucan synthase from sugar beet, Plant Physiol., 1986, vol. 81, no. 1, pp. 171–176.

    Article  Google Scholar 

  58. Kauss, H. and Jeblick, W., Influence of free fatty acids, lysophosphatidylcholine, platelet-activating factor, acylcarnitine, and echinocandin B on 1,3-β-D-glucan synthase and callose synthesis, Plant Physiol., 1986, vol. 80, no. 1, pp. 7–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Pillonel, Ch. and Meier, N., Influence of external factors on callose and cellulose synthesis during incubation in vitro of intact cotton fibres with (14C) sucrose, Planta, 1985, vol. 165, no. 1, pp. 76–84.

    Article  CAS  PubMed  Google Scholar 

  60. Flors, V., Ton, J., Jakab, G., and Mauch-Mani, B., Abscisic acid and callose: team players in defense against pathogens?, J. Phytopathol., 2005, vol. 163, nos. 7/8, pp. 377–383.

    Article  Google Scholar 

  61. Kaliff, M., Staal, J., Myrena’s, M., and Dixelius, C., ABA is required for Leptosphaeria maculans resistance via abi1 and abi4 dependent signaling, Mol. Plant Microbe Interact., 2007, vol. 20, no. 4, pp. 335–345.

    Article  CAS  PubMed  Google Scholar 

  62. Clay, N.K., Adio, A.M., Denoux, C., et al., Glucosinolate metabolites required for an Arabidopsis innate immune response, Science, 2009, vol. 323, no. 5910, pp. 95–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Botha, C.E.H. and Matsiliza, B., Reduction in transport in wheat (Triticum aestivum) is caused by sustained phloem feeding by Russian wheat aphid (Diuraphis noxia), S. Afr. J. Bot., 2010, vol. 70, no. 2, pp. 249–254.

    Google Scholar 

  64. Saheed, S.A., Cierlik, I., Larsson, K.A.F., et al., Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or β-1,3-glucanase transcript abundance, Physiol. Plant., 2009, vol. 135, no. 2, pp. 150–161.

    Article  CAS  PubMed  Google Scholar 

  65. Amor, Y., Haigler, C.H., Johnson, S., et al., A membrane-associated form of sucrose synthase and its potential role in synthesis off cellulose and callose in plants, Proc. Nat. Acad. Sci. U.S.A., 1994, vol. 92, no. 20, pp. 9353–9357.

    Article  Google Scholar 

  66. Andrawis, A., Solomon, M., and Delmer, D., Cotton fiber annexins: a potential role in the regulation of callose synthase, Plant J., 1993, vol. 3, no. 6, pp. 763–772.

    Article  CAS  PubMed  Google Scholar 

  67. Shin, H. and Brown, R.M., GTPase activity and biochemical characterization of a recombinant cotton fiber annexin, Plant Physiol., 1999, vol. 119, no. 3, pp. 925–934.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Zhang, Z., Hong, Z., and Verma, D.P.S., Phragmoplastin polymerizes into spiral coiled structures via intermolecular interaction of two self-assembly domains, J. Biol. Chem., 2000, vol. 275, no. 12, pp. 8779–8784.

    Article  CAS  PubMed  Google Scholar 

  69. Dhugga, K.S. and Ray, P.M., Purification of 1,3-β-D-glucan synthase activity from pea tissue: two polypeptides of 55 and 70 kDa copurify with enzyme activity, Eur. J. Biochem., 1994, vol. 220, no. 3, pp. 943–953.

    Article  CAS  PubMed  Google Scholar 

  70. McCormack, B.A., Gregory, A.C., Kerry, M.E., et al., Purification of an elicitor induced glucan synthase (callose synthase) from suspension cultures of French bean (Phaseolus vulgaris): purification and immunolocation of a probable Mr-65000 subunit of the enzyme, Planta, 1997, vol. 203, no. 2, pp. 196–203.

    Article  CAS  PubMed  Google Scholar 

  71. Thompson, J.R., Douglas, C.M., Li, W., et al., A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function, J. Bacteriol., 1999, vol. 181, no. 2, pp. 444–453.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Stone, B.A. and Clarke, A.E., Chemistry and physiology of higher plant 1,3-β-glucans (callose), in Chemistry and Biology of (1-3)-β-Glucans, Stone, B.A. and Clarke, A.E., Eds., Bundoora, 1992, pp. 365–429.

    Google Scholar 

  73. Scherp, P., Grotha, R., and Kutschera, U., Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants, Plant Cell Rep., 2001, vol. 20, no. 2, pp. 143–149.

    Article  CAS  Google Scholar 

  74. Schlupmann, H., Bacic, A., and Read, S.R., A novel callose synthase from pollen tubes of Nicotiana, Planta, 1993, vol. 191, no. 4, pp. 470–481.

    Article  CAS  Google Scholar 

  75. Verma, D.P.S., Cytokinesis and building of the cell plate in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 751–784.

    Article  CAS  PubMed  Google Scholar 

  76. Holland, N., Holland, D., Helentjaris, T., et al., A comparative analysis of the plant cellulose synthase (CesA) gene family, Plant Physiol., 2000, vol. 123, no. 4, pp. 1313–1324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Doblin, M.S., De Melis, L., Newbigin, E., et al., Pollen tubes of Nicotiana allata express two genes from different β-glucan synthase families, Plant Physiol., 2001, vol. 125, no. 4, pp. 2040–2052.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Subbaiah, C.C. and Sachs, M.M., Altered patterns of sucrose synthase phosphorylation and localization precede callose induction and root tip death in anoxic maize seedlings, Plant Physiol., 2001, vol. 125, no. 2, pp. 585–594.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Richmond, T.A. and Somerville, C.R., The cellulose synthase superfamily, Plant Physiol., 2001, vol. 124, no. 2, pp. 495–498.

    Article  Google Scholar 

  80. Vaten, A., Dettmer, J., Wu, S., et al., Callose biosynthesis regulates symplastic trafficking during root development, Dev. Cell, 2011, vol. 21, no. 6, pp. 1144–1155.

    Article  CAS  PubMed  Google Scholar 

  81. Dong, X., Hong, Z., Sivaramakrishnan, M., et al., Callose synthase (CalS5) is required for ixine formation during microgametogenesis and for pollen viability in Arabidopsis, Plant J., 2005, vol. 42, no. 6, pp. 315–328.

    Article  CAS  PubMed  Google Scholar 

  82. Dong, X., Hong, Z., Chatterjee, J., et al., Expression of callose synthase genes and its connection with npr1 signaling pathway during pathogen infection, Planta, 2008, vol. 229, no. 1, pp. 87–98.

    Article  CAS  PubMed  Google Scholar 

  83. Huang, L., Chen, X.Y., Rim, Y., et al., Arabidopsis glucan synthase-like 10 functions in male gametogenesis, J. Plant Physiol., 2009, vol. 166, no. 4, pp. 344–352.

    Article  CAS  PubMed  Google Scholar 

  84. Guseman, J.M., Lee, J.S., Bogenschutz, N.L., et al., Dys-regulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE8), Development, 2010, vol. 137, no. 10, pp. 1731–1741.

    Article  CAS  PubMed  Google Scholar 

  85. Jacob, S.R. and Northcote, D.H., In vitro glucan synthesis by membranes of celery petioles: the role of the membrane in determining the type of linkage formed, J. Cell Sci., 1985, no. 2, pp. 1–11.

    Google Scholar 

  86. Lukowitz, W., Nickle, T.C., Meinke, D.W., et al., Arabidopsis cyt1 mutants are deficient in a mannose 1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 5, pp. 2262–2267.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Kempema, L.A., Cui, X., Holzer, F.M., and Walling, L.L., Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. similarities and distinctions in responses to aphids, Plant Physiol., 2007, vol. 143, no. 2, pp. 849–865.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Douglas, C.M., Foor, F., Marrinan, J.A., et al., The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-β-D-glucan synthase, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 26, pp. 12907–12911.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Nedukha.

Additional information

Original Ukrainian Text © O.M. Nedukha, 2015, published in Tsitologiya i Genetika, 2015, Vol. 49, No. 1, pp. 61–70.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedukha, O.M. Callose: Localization, functions, and synthesis in plant cells. Cytol. Genet. 49, 49–57 (2015). https://doi.org/10.3103/S0095452715010090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715010090

Keywords

Navigation