Skip to main content

Spatiotemporal Specific Blocking of Plasmodesmata by Callose Induction

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2457))

Abstract

Plasmodesmata are nanoscale cell wall channels connecting neighboring cells in plants. Intercellular trafficking of molecules via plasmodesmata plays important roles in various developmental processes and stress responses. The turnover of callose, a β-1,3-glucan polysaccharide depositing in the cell wall around plasmodesmata, controls the plasmodesmal permeability and symplasmic transport. Here, we describe a protocol for the spatiotemporally controlled induction of callose synthesis and plasmodesmata closure using the cals3m system. In this system, cals3m, a mutant CALLOSE SYNTHASE 3 (CALS3) gene, is driven by inducible tissue-specific promoters of interest. After appropriate induction by 17-β-estradiol, callose is overproduced within the corresponding specific domains, resulting in temporal closure of plasmodesmata at the cell-cell interfaces. This approach can be used to validate and dissect the function of plasmodesmata-mediated symplasmic communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Storme N, Geelen D (2014) Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci 5:138. https://doi.org/10.3389/fpls.2014.00138

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zavaliev R, Ueki S, Epel BL, Citovsky V (2011) Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma 248(1):117–130. https://doi.org/10.1007/s00709-010-0247-0

    Article  CAS  PubMed  Google Scholar 

  3. Ellinger D, Voigt CA (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114(6):1349–1358. https://doi.org/10.1093/aob/mcu120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen XY, Kim JY (2009) Callose synthesis in higher plants. Plant Signal Behav 4(6):489–492. https://doi.org/10.4161/psb.4.6.8359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cui W, Lee JY (2016) Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nat Plants 2(5):16034. https://doi.org/10.1038/nplants.2016.34

    Article  CAS  PubMed  Google Scholar 

  6. Barratt DH, Kolling K, Graf A, Pike M, Calder G, Findlay K, Zeeman SC, Smith AM (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol 155(1):328–341. https://doi.org/10.1104/pp.110.166330

    Article  CAS  PubMed  Google Scholar 

  7. Xie B, Wang X, Zhu M, Zhang Z, Hong Z (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J 65(1):1–14. https://doi.org/10.1111/j.1365-313X.2010.04399.x

    Article  CAS  PubMed  Google Scholar 

  8. Vatén A, Dettmer J, Wu S, Stierhof YD, Miyashima S, Yadav SR, Roberts CJ, Campilho A, Bulone V, Lichtenberger R, Lehesranta S, Mahonen AP, Kim JY, Jokitalo E, Sauer N, Scheres B, Nakajima K, Carlsbecker A, Gallagher KL, Helariutta Y (2011) Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21(6):1144–1155. https://doi.org/10.1016/j.devcel.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  9. Siligato R, Wang X, Yadav SR, Lehesranta S, Ma GJ, Ursache R, Sevilem I, Zhang J, Gorte M, Prasad K, Wrzaczek M, Heidstra R, Murphy A, Scheres B, Mahonen AP (2016) MultiSite gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiol 170(2):627–641. https://doi.org/10.1104/pp.15.01246

    Article  CAS  PubMed  Google Scholar 

  10. Zuo JR, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24(2):265–273. https://doi.org/10.1046/j.1365-313x.2000.00868.x

    Article  CAS  PubMed  Google Scholar 

  11. Yadav SR, Yan D, Sevilem I, Helariutta Y (2014) Plasmodesmata-mediated intercellular signaling during plant growth and development. Front Plant Sci 5:44. https://doi.org/10.3389/fpls.2014.00044

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. elife 6:24125. https://doi.org/10.7554/eLife.24125

    Article  Google Scholar 

  13. Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014) A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci U S A 111(40):14619–14624. https://doi.org/10.1073/pnas.1406446111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaudioso-Pedraza R, Beck M, Frances L, Kirk P, Ripodas C, Niebel A, Oldroyd GED, Benitez-Alfonso Y, de Carvalho-Niebel F (2018) Callose-regulated symplastic communication coordinates symbiotic root nodule development. Curr Biol 28(22):3562–3577.e6. https://doi.org/10.1016/j.cub.2018.09.031

    Article  CAS  PubMed  Google Scholar 

  15. Wu S, O’Lexy R, Xu M, Sang Y, Chen X, Yu Q, Gallagher KL (2016) Symplastic signaling instructs cell division, cell expansion, and cell polarity in the ground tissue of Arabidopsis thaliana roots. Proc Natl Acad Sci 113(41):11621–11626. https://doi.org/10.1073/pnas.1610358113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zavaliev R, Epel BL (2015) Imaging callose at plasmodesmata using aniline blue: quantitative confocal microscopy. Methods Mol Biol 1217:105–119. https://doi.org/10.1007/978-1-4939-1523-1_7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ykä Helariutta and Ari Pekka Mähönen labs for the Gateway vectors. This work was supported by the National Natural Science Foundation of China (32070192) and the 111 Project#D16014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yan, D. (2022). Spatiotemporal Specific Blocking of Plasmodesmata by Callose Induction. In: Benitez-Alfonso, Y., Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 2457. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2132-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2132-5_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2131-8

  • Online ISBN: 978-1-0716-2132-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics