Skip to main content
Log in

Main trends in the genetic transformation of Populus species

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The main advantages that could be obtained by poplar plantation production were described in this review. We also described the significance of poplars for industry and for solutions to ecological problems. Taking into consideration the results obtained by genetic engineering methods, we analyzed the trends in the improvement of the Populus phenotypes related to the resistance to biotic and abiotic stresses and herbicides, as well as to the modification of the wood quality (decreasing or modifing the lignin content), phytoremediation, plant growth acceleration, and changes in the plant morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Confalonieri, M., Balestrazzi, A., Bisoffi, S., and Carbonera, D., In Vitro Culture and Genetic Engineering of Populus spp.: Forest Tree Improvement, Plant Cell. Tissue and Organ Culture, 2003, vol. 72, pp. 109–138.

    Article  CAS  Google Scholar 

  2. Vietto, L., Chiarabaglio, P.M., Rossino, R., and Cristalli, L., Meeting River Restoration and Conservation of Native Poplars on the Po River: the “Isola Colonia” Case Study, in Fifth Intern. Poplar Symposium: Poplars and Willows: from Research Models to Multipurpose Trees for a Biobased Society (Orvieto, Italy, September 20–25, 2010), p. 23.

  3. Doty, S.L., James, C.A., Moore, A.L., Vajzovic, A., Singleton, G.L., Ma, C., Khan, Z., Xin, G., Kang, J.W., Park, J.Y., Meilan, R., Strauss, S.H., Wilkerson, J., Farin, F., and Strand, S.E., Enhanced Phytoremediation of Volatile Environmental Pollutants with Transgenic Trees, Proc. Nat. Acad. Sci. U.S.A., 2007, vol. 104, no. 43, pp. 16816–16821.

    Article  CAS  Google Scholar 

  4. Massacci, A., Paris, P., Aromolo, R., Ecosse, A., Bianconi, D., and Scarascia-Mugnozza, G., Linking Wood Bioenergy Production in Poplar and Willow Plantations with Soil and Wastewater Phytoremediation in Italy, in Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a bio-based society (Orvieto, Italy, September 20–25, 2010), p. 143.

  5. Weih, M., Baum, S., and Bolte, A., Flora-Diversity in Swedish Willow and Poplar Stands: Woody Energy Crops Can Improve Biodiversity in Agricultural Landscape, in Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a biobased society (Orvieto, Italy, September 20–25, 2010), p. 148.

  6. DeWoody, J., Trewin, H., Viger, M., and Taylor, G., Growing Large Leaves from a Small-Leaf Gene Pool: Evolutionary Trajectories in Populus nigra L. (Black Poplar) in Context of a Changing Climate, in Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a biobased society (Orvieto, Italy, September 20–25, 2010), p. 19.

  7. Villar, M., Chamaillard, S., Barbaroux, C., Bastien, C., Brignolas, F., Faivre Rampant P., Fichot, R., Forestier, O., Jorge, V., and Rodrigues, S., Populus nigra as Keystone Species Able to Cope with the Ongoing Climate Change, in Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a biobased society (Orvieto, Italy, September 20–25, 2010), p. 17.

  8. Fillatti, J.J., Sellmer, J., McCown, B.H., Haissig, B.E., and Comai, L., Agrobacterium Mediated Transformation and Regeneration of Populus, Mol. Gen. Genet., 1987, vol. 206, no. 2, pp. 192–199.

    Article  CAS  Google Scholar 

  9. Tzfira T., Jensen, C.S., Wang, W., Zuker, A., Vinocur, B., Altman, A., and Vainstein, A., Transgenic Populus tremula: A Step-by-Step Protocol for Its Agrobacterium-Mediated Transformation, Plant Mol. Biol. Rep., 1997, vol. 15, pp. 219–235.

    Article  CAS  Google Scholar 

  10. Han, K.H.., Meilan, R., Ma, C., and Strauss, S.H, An Agrobacterium tumefaciens Transformation Protocol Effective on a Variety of Cottonwood Hybrids (Genus Populus), J. Plant Cell Rep., 2000, vol. 19, pp. 315–320.

    Article  CAS  Google Scholar 

  11. Meilan, R. and Ma, C., Poplar (Populus spp.), Meth. Mol. Biol., 2006, vol. 344, pp. 143–151.

    CAS  Google Scholar 

  12. Kutsokon, N.K., Levenko, B.A., Levchik, N.Ya., Lyubinskaya, A.V., Rakhmetov, D.B., Rudas, V.A., Gnatyuk, I.V., Rashidov, N.M., and Grodsinsky, D.M., Methods of Direct Regeneration and Microclonal Propagation of Populus species, in Conservarea Diversitatii Plantelor: Simp. Stiitfic International, Chisinau, Moldova, October 7–9, 2010), pp. 124–127.

  13. Taylor, G., Populus: Arabidopsis for Forestry. Do We Need a Model Tree? Arm. Bot., 2002, vol. 90, pp. 681–689.

    Article  CAS  Google Scholar 

  14. Tuskan, G.A. DiFazio, S., et al., The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray), Science, 2006, vol. 313, pp. 1596–1604.

    Article  PubMed  CAS  Google Scholar 

  15. Giri, C.C., Shyamkumar, B., and Anjaneyulu, C., Progress in Tissue Culture, Genetic Transformation and Applications of Biotechnology to Trees: An Overview, Trees, 2004, vol. 16, pp. 115–135.

    Google Scholar 

  16. Herschbach, C. and Kopriva, S., Transgenic Trees as Tools in Tree and Plant Physiology, Trees, 2002, vol. 16, pp. 250–261.

    Article  CAS  Google Scholar 

  17. Rishi, A.S., Nelson, N.D., and Goyal, A., Genetic Modification for Improvement of Populus, Physiol. Mol. Biol. Plants, 2001, vol. 7, pp. 7–21.

    Google Scholar 

  18. Lin, S.Z., Zhang, Z.Y., Zhang, Q., and Lin, Y.Z., Progress in the Study of Molecular Genetic Improvements of Poplar in China, J. Integr. Plant Biol., 2006, vol. 48, no. 9, pp. 1001–1007.

    Article  CAS  Google Scholar 

  19. Fladung, M., Gene Stability in Transgenic Aspen (Populus). 1. Flanking DNA Sequences and T-DNA Structure, Mol. Gen. Genet., 1999, vol. 260, no. 6, pp. 574–781.

    Article  PubMed  CAS  Google Scholar 

  20. Kumar, S. and Fladung, M., Gene Stability in Transgenic Aspen (Populus). 2. Molecular Characterization of Variable Expression of Transgene in Wild and Hybrid Aspen, Planta, 2001, vol. 213, no. 5, pp. 731–740.

    Article  PubMed  CAS  Google Scholar 

  21. Li, J., Brunner, A.M., Meilan, R., and Strauss, S.H., Stability of Transgenes in Trees: Expression of Two Reporter Genes in Poplar over Three Field Seasons, Tree Physiol., 2009, vol. 29, pp. 299–312.

    Article  PubMed  CAS  Google Scholar 

  22. Hawkins, S., Leple, J., Cornu, D., Jouanin, L., and Pilate, G., Stability of Transgene Expression in Poplar: A Model Forest Tree Species, Ann. Forest Sci., 2003, vol. 5, pp. 427–438.

    Article  Google Scholar 

  23. Morohoshi, N. and Kajita, S., Formation of a Tree Having a Low Lignin Content, J. Plant Res., 2001, vol. 114, pp. 517–523.

    Article  CAS  Google Scholar 

  24. Spokevicius, A.V., Van Beveren, K.S., and Bossinger, G., Agrobacterium-Mediated Transformation of Dormant Lateral Buds in Poplar Trees Reveals Developmental Patterns in Secondary Stem Tissues, Funct. Plant Biol., 2006, vol. 33, pp. 133–139.

    Article  CAS  Google Scholar 

  25. Kutsokon, N.K., The Main Pathways for Obtaining Abiotic Stress-Tolerant Transgenic Poplars, in FEBS J., Abstracts of 35 FEBS Congress (Gothenburg, Sweden, June 26–July 1, 2010), p. 195.

  26. Speranskaya, A.S., Kunitz Proteinase Inhibitors from Potato: Molecular Cloning and Gene Expression, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2008.

  27. Delledonne, M., Allegro, G., Belenghi, B., Balestrazzi, A., Picco, F., Levine, A., Zelasco, S., Calligari, P., and Confalonieri, M., Transformation of White Poplar (Populus alba L.) with a Novel Arabidopsis thaliana Cysteine Proteinase Inhibitor and Analysis of Insect Pest Resistance, Mol. Breed., 2001, vol. 7, pp. 35–42.

    Article  CAS  Google Scholar 

  28. Leple, J.C., Bonade Bottino, M., Augustin, S., Pilate, G., Dumanois, L.T.V., Delplanque, A., Cornu, D., and Jouanin, L., Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of Transgenic Poplars Expressing a Cysteine Proteinase Inhibitor, Mol. Breed., 1995, vol. 1, no. 4, pp. 319–328.

    Article  CAS  Google Scholar 

  29. Genissel, A., Leple, J.C., Millet, N., Augustin, S., and Gilles Pilate, L.J., High Tolerance against Chrysomela tremulae of Transgenic Poplar Plants Expressing a Synthetic cry3Aa gene from Bacillus thuringiensis ssp. tenebrionis, Mol. Breed., 2003, vol. 11, pp. 103–110.

    Article  CAS  Google Scholar 

  30. Confalonieri, M., Allegro, G., Balestrazzi, A., Fogher, C., and Delledonne, M., Regeneration of Populus nigra Transgenic Plants Expressing a Kunitz Proteinase Inhibitor (KTi3) Gene, Mol. Breed., 1998, vol. 4, pp. 137–145.

    Article  CAS  Google Scholar 

  31. Sairam, R.K. and Tyagi, A., Physiology and Molecular Biology of Salinity Stress Tolerance in Plants, Curr. Sci., 2004, vol. 86, no. 3, pp. 407–421.

    CAS  Google Scholar 

  32. Jouve, L., Hoffmann, L., and Hausman, J.F., Polyamine, Carbohydrate and Proline Content Changes During Salt Stress Exposure of Aspen (Populus tremula L.) Involvement of Oxidation and Osmoregulation Metabolism, Plant Biol., 2004, vol 6, pp. 74–80.

    Article  PubMed  CAS  Google Scholar 

  33. Kolodyazhnaya, Ya.S., Kutsokon, N.K., Levenko, B.A., Syutikova, O.S., Rakhmetov, D.B., and Kochetov, A.V., Transgenic Plants Tolerant to Abiotic Stresses, Cytol. Genet., 2009, vol. 43, no. 2, pp. 132–150.

    Article  Google Scholar 

  34. Nuccio, M.L., Rhodes, D., McNeil, S.D., and Hanson, A.D., Metabolic Engineering of Plants for Osmotic Stress Resistance, Curr. Opin. Plant Biol., 1999, vol. 2, pp. 128–134.

    Article  PubMed  CAS  Google Scholar 

  35. Parvanova, D., Popova, A., Zaharieva, I., Lambrev, P., Konstantinova, T., Taneva, S., Atanassov, A., Goltsev, V., and Djilianov, D., Low Temperature Tolerance of Tobacco Plants Transformed to Accumulate Proline, Fructans, or Glycine Betaine. Variable Chlorophyll Fluorescence Evidence, Photosynthetica, 2004, vol. 42, no. 2, pp. 179–185.

    Article  CAS  Google Scholar 

  36. Hu, L., Lu, H., Liu, Q., Chen, X., and Jiang, X., Overexpression of MtlD Gene in Transgenic Populus tomentosa Improves Salt Tolerance through Accumulation of Mannitol, Tree Physiol., 2005, vol. 25, pp. 1273–1281.

    PubMed  CAS  Google Scholar 

  37. Wang, W., Vinocur, B., and Altman, A., Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance, Planta, 2003, vol. 218, pp. 1–14.

    Article  PubMed  CAS  Google Scholar 

  38. Kavi Kishor, P.B., Hong, Z., Miao, C.-H., Hu, C.A., and Verma, D.P., Overexpression of A-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants, Plant Physiol., 1995, vol. 108, pp. 1387–1394.

    Google Scholar 

  39. Kavi Kishor, P.B., Sangam, S., Amrutha, N.R., Sri Laxmi P., Naidu, K.R., Rao, K.R.S.S., Sreenath Rao., Reddy, K.J., Theriappan, P., and Sreenivasulu, N., Regulation of Proline Biosynthesis, Degradation, Uptake and Transport in Higher Plants: Its Implications in Plant Growth and Abiotic Stress Tolerance, Curr. Sci., 2005, no. 3, pp. 424–438.

  40. Kolodyazhnaya, Ya.S., Titov, S.E., Kochetov, A.V., Komarova, M.L., Romanova, A.V., Koval’, V.S., and Shumny, V.K., Evaluation of Salt Tolerance in Nicotiana tabacum Plants Bearing an Antisense Suppressor of the Proline Dehydrogenase Gene, Russ. J. Genet., 2006, vol. 42, no. 2, pp. 212–214.

    Article  CAS  Google Scholar 

  41. Hur, J., Jung, K., Lee, C.-H., and Ana, G., Stress-Inducible OsP5CS2 Gene Is Essential for Salt and Cold Tolerance in Rice, Plant Sci., 2004, vol. 167, pp. 417–426.

    Article  CAS  Google Scholar 

  42. Islam, M.M., Hoque, M.A., Okuma, E., Banu, M.N., Shimoishi, Y., Nakamura, Y., and Murata, Y., Exogenous Proline and Glycinebetaine Increase Antioxidant Enzyme Activities and Confer Tolerance to Cadmium Stress in Cultured Tobacco Cells, J. Plant Physiol., 2009, vol. 166, pp. 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  43. Levenko, B.A., Transgennye rasteniya (Transgenic Plants), Kiev, 2000.

  44. Kawaoka, A., Matsunaga, E., Endo, S., Kondo, S., Yoshida, K., Shinmyo, A., and Ebinuma, H., Ectopic Expression of a Horseradish Peroxidase Enhances Growth Rate and Increases Oxidative Stress Resistance in Hybrid Aspen, Plant Physiol., 2003, vol. 132, pp. 1177–1185.

    Article  PubMed  CAS  Google Scholar 

  45. Sharkey, T.D. and Singsaas, E.L., Why Plants Emit Isoprene, Nature, 1995, vol. 374, p. 769.

    Article  CAS  Google Scholar 

  46. Behnke, K., Ehlting, B., Teuber, M., Bauerfeind, M., Louis, S., Hansch, R., Polle, A., Bohlmann, J., and Schnitzler, J., Transgenic, Non-Isoprene Emitting Poplars Don’t Like It Hot, Plant J., 2007, vol. 51, pp. 485–499.

    Article  PubMed  CAS  Google Scholar 

  47. Mohapatra, S., Minocha, R., and Minocha, S.C., Putrescine Overproduction Changes the Oxidative State of Poplar Cells in Culture and Aids in Aluminum Tolerance, in 71 Annual Meeting of the Northeast Section of the American Society of Plant Biologists “Fueling the Future through Plant Biology,” SUNY College of Environmental Science and Forestry Syracuse, New York, June 1–2, 2007.

  48. Balestrazzi, A., Botti, S., Zelasco, S., Biondi, S., Franchin, C., Calligari, P., Racchi, M., Turchi, A., Lingua, G., Berta, G., and Carbonera, D., Expression of the PsMTA1 Gene in White Poplar Engineered with the MAT System Is Associated with Heavy Metal Tolerance and Protection against 8-Hydroxy-20-Deoxyguanosine Mediated-DNA Damage, Plant. Cell Rep., 2009, vol. 28, pp. 1179–1192.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, Y.C., Qu, G.Z., Li, H.Y., Wu, Y.J., Wang, C., Liu, G.F., and Yang, C.P., Enhanced Salt Tolerance of Transgenic Poplar Plants Expressing a Manganese Superoxide Dismutase from Tamarix androssowii, Mol. Biol. Rep., 2010, vol. 37, no. 2, pp. 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, T.T., Song, Y.Z., Liu, Y.D., Guo, X.Q., Zhu, C.X., and Wen, F.J., Overexpression of Phospholipase Da Gene Enhances Drought and Salt Tolerance of Populus tomentosa, J. Chinese Sci. Bull., 2008, vol. 53, no. 23, pp. 3656–3665.

    Article  CAS  Google Scholar 

  51. Zhou, Z, Wang, M.-J., Hu, J.-J., Lu, M.-Z., and Wang, J.H., Improve Freezing Tolerance in Transgenic Poplar by Overexpressing a ω-3 Fatty Acid Desaturase Gene, Mol. Breed., 2010, vol. 25, no. 4, pp. 571–579.

    Article  CAS  Google Scholar 

  52. Welling, A., Moritz, T., Patva, E.T., and Junttila, O., Independent Activation of Cold Acclimation by Low Temperature and Short Photoperiod in Hybrid Aspen, Plant Physiol., 2002, vol. 129, pp. 1633–1641.

    Article  PubMed  CAS  Google Scholar 

  53. Olsen, J.E., Junttila, O., Nilsen, J., Eriksson, M.E., Martinussen, I., Olsson, O., Sandberg, G., and Moritz, T., Ectopic Expression of Oat Phytochrome A in Hybrid Aspen Changes Critical Day Length for Growth and Prevents Cold Acclimatization, Plant J., 1997, vol. 12, pp. 1339–1350.

    Article  CAS  Google Scholar 

  54. Li, Y., Su, X., Zhang, B., Huang, Q., Zhang, X., and Huang, R., Expression of Jasmonic Ethylene Responsive Factor Gene in Transgenic Poplar Tree Leads to Increased Salt Tolerance, Tree Physiol., 2009, vol. 29, no. 2, pp. 273–279.

    Article  PubMed  CAS  Google Scholar 

  55. http://www.purdue.edu/uns/html4ever/2006/060823.Chapple.poplar.html

  56. Barakat, A., Bagniewska-Zadwoma, A., Choi, A., Plakkat, U., Diloreto, D.S., Yellanki, P., and Carlson, J.E., The Cinnamyl Alcohol Dehydrogenase Gene Family in Populus: Phytogeny, Organization, and Expression, BMC Plant Biol, 2009, vol. 9, no. 26, pp. 1–15.

    Google Scholar 

  57. Ovruts’ka, I.I., Notion about Cell Wall Lignification, Ukr. Bot. Zh., 2007, vol. 64, no. 5, pp. 720–729.

    Google Scholar 

  58. Rukavtsova, E.B., Alekseeva, V.V., and Bur’yanov, Ya.I., The Use of RNA Interference for the Metabolic Engineering of Plants (Review), Russ. J. Bioorg. Chem., 2010, vol. 36, no. 2, pp. 146–156.

    Article  CAS  Google Scholar 

  59. Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J., and Chiang, V.L., Repression of Lignin Biosynthesis Promotes Cellulose Accumulation and Growth in Transgenic Trees, Nat. Biotechnol., 1999, vol. 17, no. 8, pp. 808–812.

    Article  PubMed  CAS  Google Scholar 

  60. Stewart, J.J., Akiyama, T., Chapple, C., Ralph, J., and Mansfield, S.D., The Effects on Lignin Structure of Overexpression of Ferulate 5-Hydroxylase in Hybrid Poplar, Plant. Physiol., 2009, vol. 150, no. 2, pp. 621–635.

    Article  PubMed  CAS  Google Scholar 

  61. Coleman, H.D., Park, J.-Y., Nair, R., Chappie, C., and Mansfield, S.D., RNAi-Mediated Suppression of P-Coumaroyl-CoA 3’-Hydroxylase in Hybrid Poplar Impacts Lignin Deposition and Soluble Secondary Metabolism, Proc. Nat. Acad. Sci. U.S.A., 2008, vol. 105, no. 11, pp. 4501–4506.

    Article  CAS  Google Scholar 

  62. Lapieirre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., Leple, J.-C., Boerjan, W., Ferret, V., De Nadai, V., and Jouanin, L., Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping, Plant Physiol., 1999, vol. 119, pp. 153–163.

    Article  Google Scholar 

  63. Lapieirre, C., Pilate, G., Pollet, B., Mila, L., Jouanin, J.-L., Kimd, H., and Ralph, J., Signatures of Cinnamyl Alcohol Dehydrogenase Deficiency in Poplar Lignins, Phytochemistry, 2004, vol. 65, pp. 313–321.

    Article  Google Scholar 

  64. Gordon, M.P., Choe, N., Duffy, J., Ekuan, G., Heilman, P., Muiznieks, L., Ruszaj, M., Shurtleff, B.B., Strand, S., Wilmoth, J., and Newman, L.A., Phytoremediation of Trichloroethylene with Hybrid Poplars, Environ. Health Perspect., 1998, vol. 106, pp. 1001–1012.

    PubMed  CAS  Google Scholar 

  65. Abhilash, P.C., Jamil, S., and Singh, N., Transgenic Plants for Enhanced Biodegradation and Phytoremediation of Organic Xenobiotics, Biotechnol. Adv., 2009, vol. 27, pp. 474–488.

    Article  PubMed  CAS  Google Scholar 

  66. Ohmiya, Y., Ono, T., Taniguchi, T., Itahana, N., Ogawa, N., Miyashita, K., Ohmiya, K., Sakka, K., and Kimura, T., Stable Expression of the Chlorocatechol Dioxygenase Gene from Ralstonia eutropha NH9 in Hybrid Poplar Cells, Boisci. Biotechnol. Biochem., 2009, vol. 73, no. 6, pp. 1425–1428.

    Article  CAS  Google Scholar 

  67. Zscheck, K.K. and Murray, B.E., Evidence for a Staphylococcal-Like Mercury Resistance Gene in Enterococcus Faecalis, Antimicrob. Agents Chemother., 1990, vol. 34, no. 6, pp. 1287–1289.

    PubMed  CAS  Google Scholar 

  68. Choi, Y.I., Noh, E.W., Lee, H.S., Han, M.S., Lee, J.S., and Choi, K.S., Mercury-Tolerant Transgenic Poplars Expressing Two Bacterial Mercury-Metabolizing Genes, J. Plant Biol., 2007, no. 6, pp. 658–662.

  69. Peuke, A.D. and Rennenberg, H., Phytoremediation with Transgenic Trees, Z. Naturforsch., A: Phys. Sci., 2005, no. 199, p. 207.

  70. De Block, M., Factors Influencing the Tissue Culture and the Agrobacterium Tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones, Plant Physiol., 1990, pp. 1110–1116.

  71. Confalonieri, M., Belenghi, B., Balestrazzi, A., Negri, S., Facciotto, G., Schenone, G., and Delledonne, M., Transformation of Elite White Poplar (Populus alba L.) cv’ Villafranca’ and Evaluation of Herbicide Resistance, Plant Cell Rep., 2000, vol. 19, pp. 978–982.

    Article  CAS  Google Scholar 

  72. Busov, V.B., Brunner, A.M., and Strauss, S.H., Genes for Control of Plant Stature and Form, New Phytol., 2008, vol. 177, pp. 589–607.

    Article  PubMed  CAS  Google Scholar 

  73. Busov, V.B., Meilan, R., Pearce, D.W., Ma, C., Rood, S.B., and Strauss, S.H., Activation Tagging of a Dominant Gibberellin Catabolism Gene (GA 2-Oxidase) from Poplar Mat Regulates Tree Stature, Plant Physiol., 2003, vol. 132, pp. 1283–1291.

    Article  PubMed  CAS  Google Scholar 

  74. Etherington, E., Gandhi, H., Busov, V., Meilan, R., Ma, C., Kosola, K., and Strauss, S.H., Dwarfism Genes for Modifying the Stature of Woody Plants: a Case Study in Poplar, Landscape Plant News, 2007, vol. 18, pp. 3–6.

    Google Scholar 

  75. Eriksson, M.E., Israelsson, M., Olsson, O., and Moritz, T., Increased Gibberellin Biosynthesis in Transgenic Trees Promotes Growth, Biomass Production and Xylem Fiber Length, Nat. Biotechnol., 2000, vol. 18, no. 7, pp. 784–788.

    Article  PubMed  CAS  Google Scholar 

  76. Choi, Y.I., Noh, E.W., and Choi, K.S., Low Level Expression of Prokaryotic Tzs Gene Enhances Growth Performance of Transgenic Poplars, Trees, 2009, no. 23, pp. 741–750.

  77. Tzfira, T., Vainstein, A., and Altman, A., rol-Gene Expression in Transgenic Aspen (Populus tremula) Plants Results in Accelerated Growth and Improved Stem Production Index, Trees, 1999, vol. 14, pp. 49–54.

    Google Scholar 

  78. Fuchilo, Ya.D., Plantation Forestry in Ukraine: Prospects of Development, in Nauk. Visn. Nats. Lisotekhn. Univ. Ukr.: Collected Papers, 2008, vol. 6, pp. 97–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Kutsokon.

Additional information

Original Ukrainian Text © N.K. Kutsokon, 2011, published in Tsitologiya i Genetika, 2011, Vol. 45, No. 6, pp. 67–78.

About this article

Cite this article

Kutsokon, N.K. Main trends in the genetic transformation of Populus species. Cytol. Genet. 45, 352–361 (2011). https://doi.org/10.3103/S009545271106003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271106003X

Keywords

Navigation