Skip to main content
Log in

Genetically programmed cell death: the base of homeostasis and the form of the phytoimmunity response

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Modern concepts of programmed cell death, particularly the apoptosis in animals and plants are analyzed in this paper. A comparative characteristic of apoptosis in animal and plant cells taking into consideration the physiologic features of cells is presented. Necrosis as a form of pathological and not genetically programmed cell death is characterized. The significance (necessity) of apoptosis during the formation of a plant’s hypersensitive response and the role of programmed cell death under conditions of joint interrelations in the “pathogen-host” system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melino, G., The Meaning of Death, Cell Death Differ., 2002, vol. 9, no. 4, pp. 347–348.

    Article  PubMed  Google Scholar 

  2. Hooke, R., Micrographia, London: Royal Soc., 1665.

    Google Scholar 

  3. Vogt, C., Untersuchungen uber die Entwicklungsgeschichte der Geburtshelerkroete (Alytes obstetricians), Solothurn: Jent und Gassman, 1842, p. 130.

    Google Scholar 

  4. Lockshin, R.A. and Williams, C.M., Programmed Cell Death: Cytology of Degeneration in the Intersegmental Muscles of the Silkmoth, J. Insect Physiol., 1965, vol. 11, pp. 123–133.

    Article  PubMed  CAS  Google Scholar 

  5. Kerr, J.F.R., Wyllie, A.H., and Currie, A.R., Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics, Brit. J. Cancer, 1972, vol. 2, pp. 239–257.

    Google Scholar 

  6. Ameisen, J.C., On the Origin, Evolution, and Nature of Programmed Cell Death: A Timeline of Four Billion Years, Cell Death Differ., 2002, no. 9, pp. 367–393.

  7. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., et al., Nomenclature Committee on Cell Death. 2009. Classification of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2009, Cell Death Differ., 2009, vol. 16, no. 1, pp. 3–11.

    Article  PubMed  CAS  Google Scholar 

  8. Schwartz, L.M., Smith, S.W., Jones, M.E., and Osborne, B.A., Do All Programmed Cell Death Occur via Apoptosis?, Proc. Nat. Acad. Sci. USA, 1993, vol. 90, pp. 980–984.

    Article  PubMed  CAS  Google Scholar 

  9. Sperandio, S. and Bredesen, D., An Alternative Non-Apoptotic Form of Programmed Cell Death, Proc. Nat. Acad. Sci. USA, 2000, vol. 97, pp. 14376–14381.

    Article  PubMed  CAS  Google Scholar 

  10. Kroemer, G., Dallaporta, B., and Resche-Rigon, M., The Mitochondrial Death/Life Regulator in Apoptosis and Necrosis, Annu. Rev. Physiol., 1998, vol. 60, pp. 619–642.

    Article  PubMed  CAS  Google Scholar 

  11. Novozhilova, A.P., Pluzhnikov, N.N., and Novikov, V.S., Programmirovannaya kletochnaya gibel’ (Programmed Cell Death), Novikov, V.S., Ed., St. Petersburg: Nauka, 1996.

    Google Scholar 

  12. Tsujimoto, Y. and Shimizu, S., Role of the Mitochondrial Membrane Permeability Transition in Cell Death, Apoptosis, 2007, vol. 12, no. 5, pp. 835–840.

    Article  PubMed  CAS  Google Scholar 

  13. Gottlieb, R.A., Programmed Cell Death, Drug News Persp., 2000, vol. 13, no. 8, pp. 471–476.

    CAS  Google Scholar 

  14. Antigen Receptor Molecules, in Advanced Immunology, Male, D., Cooke, A., Owen, M., Trowsdale, J., and Champion, B., Eds., London: Mosby, 1996, pp. 2.1–2.2.

    Google Scholar 

  15. Samuilov, V.D., Oleskin, A.V., and Lagunova, E.M., Programmed Cell Death, Biokhimiya, 2000, vol. 65, no. 8, pp. 1029–1046.

    Google Scholar 

  16. Nash, P.B., Purner, M.B., Leon, R.P., Clarke, P., Duke, R.C., and Curiel, T.J., Toxoplasma gondii — Infected Cells Are Resistant to Multiple Inducers of Apoptosis, J. Immunol., 1998, vol. 160, pp. 1824–1830.

    PubMed  CAS  Google Scholar 

  17. Cohen, J.J., Apoptosis, Immunol. Today, 1993, vol. 14, pp. 126–130.

    Article  PubMed  CAS  Google Scholar 

  18. Jacodson, M.D., Weil, M., and Raff, M.C., Programmed Cell Death in Animal Development, Cell, 1997, vol. 88, pp. 347–354.

    Article  Google Scholar 

  19. Thompson, C.B., Apoptosis in the Pathogenesis and Treatment of Disease, Science, 1995, vol. 267, pp. 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  20. Ashkenazi, A. and Dixit, V.M., Death Receptors: Signaling and Modulation, Science, 1998, vol. 281, pp. 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  21. Hengartner, M.O., The Biochemistry of Apoptosis, Nature, 2000, vol. 407, pp. 770–776.

    Article  PubMed  CAS  Google Scholar 

  22. Sun, M., Song, L., Li, Y., Zhou, T., and Jope, R.S., Identification of An Antiapoptotic Protein Complex at Death Receptor, Cell Death Differ., 2008, vol. 15, no. 12, pp. 1887–1990.

    Article  PubMed  CAS  Google Scholar 

  23. Haunstetter, A. and Izumo, S., Apoptosis: Basic Mechanisms and Implications for Cardiovascular Disease, Circ. Res., 1998, vol. 82, pp. 1111–1129.

    PubMed  CAS  Google Scholar 

  24. Kidd, V.J., Proteolytic Activities That Mediate Apoptosis, Annu. Rev. Physiol., 1998, vol. 60, pp. 533–573.

    Article  PubMed  CAS  Google Scholar 

  25. Broker, L.E., Kruyt, F.A.E., and Giaccone, G., Cell Death Independent of Caspases, Clin. Cancer Res., 2005, vol. 11, pp. 3155–3162.

    Article  PubMed  Google Scholar 

  26. Morgan, S.E. and Kastan, M.B., Dissociation of Radiation-Induced Phosphorylation of Replication Protein A from the S-Phase Checkpoint, Adv. Cancer. Res., 1997, vol. 71, pp. 1–25.

    Article  PubMed  CAS  Google Scholar 

  27. Agarwal, M.L., Taylor, W.R., Chernov, M.V., Chernova, O.B., and Stark, G.R., The p53 Network, J. Biol. Chem., 1998, vol. 1, no. 4, pp. 273–276.

    Google Scholar 

  28. Bates, S. and Vousden, K.H., Mechanisms of p53-Mediated Apoptosis, Cell. Mol. Life Sci, 1999, vol. 55, pp. 28–37.

    Article  PubMed  CAS  Google Scholar 

  29. Raff, M., Cell Suicide for Beginners, Nature, 1998, vol. 396, pp. 119–122.

    Article  PubMed  CAS  Google Scholar 

  30. Green, D.R. and Redd, J.C., Mitochondria and Apoptosis, Science, 1998, vol. 281, pp. 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  31. Gross, A., McDonnell, J.M., and Korsmeyer, S.J., BCL-2 Family Members and the Mitochondria in Apoptosis, Genes Dev., 1999, vol. 13, pp. 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, M., Lee, S., Park, K., Jeong, E.J., Ryu, C.M., Choi, D., and Pai, H.S., Comparative Microarray Analysis of Programmed Cell Death Induced by Proteasome Malfunction and Hypersensitive Response in Plants, Biochem. Biophys. Res. Commun., 2006, vol. 342, no. 2, pp. 514–521.

    Article  PubMed  CAS  Google Scholar 

  33. Hofius, D., Tsitsigiannis, D.I., Jones, J.D., and Mundy, J., Inducible Cell Death in Plant Immunity, Semin. Cancer Biol., 2007, vol. 17, no. 2, pp. 166–187.

    Article  PubMed  CAS  Google Scholar 

  34. Greenberg, J.T., Programmed Cell Death: A Way of Life for Plants, Proc. Nat. Acad. Sci. USA, 1996, vol. 93, pp. 12094–12097.

    Article  PubMed  CAS  Google Scholar 

  35. Beers, E.P., Programmed Cell Death During Plant Growth and Development, Cell Death Differ., 1997, vol. 4, pp. 649–661.

    Article  PubMed  CAS  Google Scholar 

  36. Rubinstein, B. and Osborne, B., Dying for a Living: Plants Do It, Cell Death Differ., 1997, vol. 4, pp. 647–648.

    Article  PubMed  CAS  Google Scholar 

  37. Liang, H., Yao, N., Song, J.T., Luo, S., Lu, H., and Greenberg, J.T., Ceramides Modulate Programmed Cell Death in Plants, Genes Dev., 2003, vol. 17, pp. 2636–2641.

    Article  PubMed  CAS  Google Scholar 

  38. Samuilov, V.D., Programmed Cell Death, Soros. Obrazovat. Zh., 2001, vol. 7, no. 10, pp. 12–17.

    Google Scholar 

  39. Mittler, R., Simon, L., and Lam, E., Pathogen-Induced Programmed Cell Death in Tobacco, J. Cell Sci., 1997, vol. 110, pp. 1333–1344.

    PubMed  CAS  Google Scholar 

  40. D’yakov, Yu.T. and Bagirov, S.F., What Is Common in Plant and Animal Immunity?, Priroda (Moscow, Russ. Fed.), 2001, no. 11, pp. 52–58.

  41. Bestwick, C.S., Bennet, M.G., and Mansfield, J.W., Hrp Mutant of Pseudomonas syringae bv. phaseolicola Induces Alterations but Not Membrane Damage Leading to the Hypersensitive Reaction in Lettuce, Plant Physiol., 1995, vol. 108, pp. 503–516.

    PubMed  CAS  Google Scholar 

  42. Wakabayashi, Y. and Karbowski, M., Structural Changes of Mitochondria Related to Apoptosis, Biol. Signals Recept., 2001, vol. 10, pp. 26–56.

    Article  PubMed  CAS  Google Scholar 

  43. He, C.-J., Morgan, P.W., and Drew, M.C., Transduction of an Ethylene Signal Is Required for Cell Death and Lysis in the Root Cortex of Maize during Aerenchyma Formation Induced by Hypoxia, Plant Physiol., 1996, vol. 112, pp. 463–472.

    PubMed  CAS  Google Scholar 

  44. Levine, A., Pennell, I., Alvarez, M.E., Palmer, R., and Lamb, C., Calcium-Mediated Apoptosis in a Plant Hypersensitive Disease Resistance Response, Curr. Biol., 1996, vol. 6, pp. 427–437.

    Article  PubMed  CAS  Google Scholar 

  45. Lam, E., Kato, N., and Lawtn, M., Programmed Cell Death, Mitochondria and the Plant Hypersensitive Response, Nature, 2001, vol. 411, pp. 848–853.

    Article  PubMed  CAS  Google Scholar 

  46. Seo, S., Okamoto, M., Iwai, T., Iwano, M., Fukui, K., Isogai, A., et al., Reduced Levels of Chloroplast FtsH Protein in Tobacco Mosaic Virus-Infected Tobacco Leaves Accelerate the Hypersensitive Reaction, Plant Cell, 2000, vol. 12, pp. 917–932.

    Article  PubMed  CAS  Google Scholar 

  47. Aravind, L. and Dixit, V., M., Koonin E.V. Apoptotic Molecular Machinery: Vasty Increased Complexity in Vertebrates Revealed by Genome Comparisons, Science, 2001, vol. 16, no. 291, pp. 1279–1284.

    Article  Google Scholar 

  48. Balk, J., Leaver, C.J., and McCabe, P.F., Translocation of Cytochrome C from the Mitochondria to the Cytosol Occurs during Heat-Induced Programmed Cell Death in Cucumber Plants, FEBS Lett., 1999, vol. 462, pp. 151–154.

    Article  Google Scholar 

  49. D’yakov, Yu.T., Ozeretskovskaya, O.L., Dzhavakhiya, V.G., and Bagirova, S.F., Obshchaya i molekulyarnaya fitopatologiya (General and Molecular Phytopathology), Moscow, 2001.

  50. Pennazio, S., The Hypersensitive Reaction of Higher Plants to Viruses: A Molecular Approach, New Microbiol., 1995, vol. 18, no. 2, pp. 229–240.

    PubMed  CAS  Google Scholar 

  51. Mehdy, M.C., Active Oxygen Species in Plant Defense against Pathogens, Plant Physiol., 1994, vol. 105, pp. 467–472.

    PubMed  CAS  Google Scholar 

  52. Kim, M., Lee, S., Park, K., Jeong, E.J., Ryu, C.M., Choi, D., and Pai, H.S., Comparative Microarray Analysis of Programmed Cell Death Induced by Proteasome Malfunction and Hypersensitive Response in Plants, Biochem. Biophys. Res. Commun., 2006, vol. 7, no. 342, pp. 514–521.

    Article  CAS  Google Scholar 

  53. Gadjev, I., Stone, J.M., and Gechev, T.S., Programmed Cell Death in Plants New Insights into Redox Regulation and the Role of Hydrogen Peroxide, Int. Rev. Cell. Mol. Biol., 2008, vol. 270, pp. 87–144.

    Article  PubMed  CAS  Google Scholar 

  54. Keen, N.T., Gene-for-Gene Complementarity in Plant-Pathogen Interactions, Ann. Rev. Genet., 1990, vol. 24, pp. 447–463.

    Article  PubMed  CAS  Google Scholar 

  55. Flor, H.H., Inheritance of Reaction to Rust in Flax, J. Agr. Res., 1947, vol. 74, pp. 241–262.

    Google Scholar 

  56. Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y., and Martin, G.B., Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase, Science, 1996, vol. 274, pp. 2060–2063.

    Article  PubMed  CAS  Google Scholar 

  57. Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valen, B., Direct Interaction of Resistance Gene and Avirulence Gene Products Confers Rice Blast Resistance, EMBO, 2000, vol. 19, pp. 4004–4014.

    Article  CAS  Google Scholar 

  58. Leister, R.T. and Katagiri, F., A Resistance Gene Product of the Nucleotide Binding Site-Leucine Rich Repeats Class Can Form a Complex with Bacterial Avirulence Proteins in Vivo, Plant J., 2000, vol. 22, pp. 345–354.

    Article  PubMed  CAS  Google Scholar 

  59. Shao, F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E., and Innes, R.W., Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector, Science, 2003, vol. 301, pp. 1230–1233.

    Article  PubMed  CAS  Google Scholar 

  60. Lovato, F.A., Inoue-Nagata, A.K., Nagata, T., de Avila, A.C., Pereira, L.A., and Resende, R.O., The N Protein of Tomato Spotted Wilt Virus (TSWV) Is Associated with the Induction of Programmed Cell Death (PCD) in Capsicum chinense Plants, a Hypersensitive Host to TSWV Infection, Virus Res., 2008, vol. 137, no. 2, pp. 245–252.

    Article  PubMed  CAS  Google Scholar 

  61. Kim, C.Y., Bove, J., and Assmann, S.M., Overexpression of Wound-Responsive RNA-Binding Proteins Induces Leaf Senescence and Hypersensitive-Like Cell Death, New Phytol., 2008, vol. 180, no. 1, pp. 57–70.

    Article  PubMed  CAS  Google Scholar 

  62. Tenhaken, R., Doerks, T., and Bork, P., DCD—A Novel Plant Specific Domain in Proteins Involved in Development and Programmed Cell Death, BMC Bioinformatics, 2005, vol. 6, pp. 169–172.

    Article  PubMed  CAS  Google Scholar 

  63. Bendahmane, A., Kanyuka, K., and Baulcombe, D.C., The Rx Gene from Potato Controls Separate Virus Resistance and Cell Death Responses, Plant Cell, 1999, vol. 11, pp. 781–791.

    Article  PubMed  CAS  Google Scholar 

  64. Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., and Levine, A., The Involvement of Cysteine Proteases and Protease Inhibitor Genes in the Regulation of Programmed Cell Death in Plants, Plant Cell, 1999, vol. 11, pp. 431–444.

    Article  PubMed  CAS  Google Scholar 

  65. Del Poso, O. and Lam, E., Caspases and Programmed Cell Death in Hypersensitive Response of Plants to Pathogen, Curr. Biol., 1998, vol. 8, pp. 1129–1132.

    Article  Google Scholar 

  66. Uren, A., O’Rourke, K., Aravind, L., Pisabarro, M., Seshagiri, S., Koonin, E., and Dixit, V., Identification of Paracaspases and Metacaspases: Two Ancient Families of Caspase-Like Proteins, One of Which Plays a Key Role in MALT Lymphoma, Mol. Cell, 2000, vol. 6, pp. 961–967.

    PubMed  CAS  Google Scholar 

  67. Grenberg, J.T. and Yao, N., The Role and Regulation of Programmed Cell Death in Plant-Pathogen Interaction, Cell Microbiol., 2004, vol. 6, pp. 201–212.

    Article  CAS  Google Scholar 

  68. Mittler, R., Shulaev, V., Seskar, M., and Lam, E., Inhibition of Programmed Cell Death in Tobacco Plants during a Pathogen-Induced Hypersensitive Response at Low Oxygen Pressure, Plant Cell, 1996, vol. 8, no. 11, pp. 1991–2001.

    Article  PubMed  CAS  Google Scholar 

  69. Del Pozo, O. and Lam, E., Expression of the Baculovirus P35 Protein in Tobacco Affects Cell Death Progression and Compromises N Gene-Mediated Disease Resistance Response to Tobacco Mosaic Virus, Mol. Plant-Microbe Interact., 2003, vol. 16, pp. 485–494.

    Article  PubMed  Google Scholar 

  70. Yao, N., Imai, S., Tada, Y., Nakayashiki, H., Tosa, Y., Park, P., et al., Apoptotic Cell Death Is a Common Response to Pathogen Attack in Oats, Mol. Plant-Microbe Interact., 2002, vol. 15, pp. 1000–1007.

    Article  PubMed  CAS  Google Scholar 

  71. Dickman, M.B., Park, Y.K., Olterdsdorf, T., Li, W., Clemente, T., and French, R., Abrogation of Disease Development in Plants Expressing Animal Antiapoptotic Genes, Proc. Nat. Acad. Sci. USA, 2001, vol. 98, pp. 6957–6962.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kyrychenko.

Additional information

Original Ukrainian Text © A.M. Kyrychenko, O.G. Kovalenko, 2010, published in Tsitologiya i Genetika, 2010, Vol. 44, No. 4, pp. 70–81.

About this article

Cite this article

Kyrychenko, A.M., Kovalenko, O.G. Genetically programmed cell death: the base of homeostasis and the form of the phytoimmunity response. Cytol. Genet. 44, 252–261 (2010). https://doi.org/10.3103/S0095452710040110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452710040110

Keywords

Navigation