Skip to main content
Log in

A General Harmonic Solution in Dilaton Electrodynamics: An Exact Expression for the Fields and the Generalized Lorentz Force

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

An exact expression is obtained for harmonic fields in Maxwell electrodynamics with dilatons in terms of elliptic Jacobi functions and elliptic Legendre integrals. The case of centrally symmetric fields is considered individually and effective charges of all three types, that is, electric, magnetic, and dilaton charges, are calculated. An expression is given for the generalized Lorentz force that acts on a test electrically charged particle in these fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Overduin and P. S. Wesson, Phys. Rep. 283, 303 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. S. Berman and D. C. Thompson, Phys. Rep. 566, 1 (2014).

    Article  ADS  Google Scholar 

  3. D. Youm, Phys. Rep. 316, 1 (1999).

    Article  ADS  Google Scholar 

  4. O. V. Kechkin and P. A. Mosharev, Int. J. Mod. Phys. A 31, 1650127 (2016).

    Article  ADS  Google Scholar 

  5. O. V. Kechkin and P. A. Mosharev, Mod. Phys. Lett. A 31, 1650169 (2016).

    Article  ADS  Google Scholar 

  6. O. V. Kechkin and P. A. Mosharev, in Proceedings of the 16th Interschool Scientific School of Young Specialists on Concentrated Energy Fluxes in Cosmic Engineering, Electronics, Ecology, and Medicine, 2015.

  7. O. V. Kechkin, I. P. Denisova, and P. A. Mosharev, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 3, 1930406 (2019). http://uzmu.phys.msu.ru/abstract/2019/3/1930406

  8. O. V. Kechkin and P. A. Mosharev, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 6, 1960102 (2019). http://uzmu.phys.msu.ru/abstract/2019/6/1960102.

  9. G. M. Fikhtengolts, Course of Differential and Integral Calculus (St. Petersburg, 2016), Vol. 2 [in Russian].

    Google Scholar 

  10. E. T. Whittaker and D. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, 1927).

    MATH  Google Scholar 

  11. I. P. Denisova and O. V. Kechkin, Phys. Part. Nucl. Lett. 15, 464 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Kechkin or P. A. Mosharev.

Additional information

Translated by N. Berestova

APPENDIX

APPENDIX

THE GENERALIZED LORENTZ FORCE

It was shown in [11] that the motion of a test point electrically charged particle in DME fields can be described based on the principle of least action. It was also shown in this work that the classical expression for the Lorentz force must be replaced in the presence of a dilaton by the formula

$$\frac{d\mathbf{u}}{dt}=-\mathcal{P}\left(\mathbf{E}+[\mathbf{v}\times\mathbf{B}]\right)$$
$${}-\mathcal{L}\left(\gamma^{-1}\nabla\phi+\gamma(\dot{\phi}+(\mathbf{v}\nabla\phi))\mathbf{v}\right),$$

where \(\mathbf{u}=\gamma\mathbf{v}\), \(\mathbf{v}=d\mathbf{r}/{dt}\), \(\gamma=1/\sqrt{1-\left(\mathbf{v}\right)^{2}}\), \(\mathbf{E}=-\nabla v\), the point denotes the derivative with respect to time, and the functions \(\mathcal{P}\) and \(\mathcal{L}\) are defined as

$$\mathcal{P}=\frac{-\varkappa e^{-(b+\alpha)\phi}}{\sqrt{1+\varkappa^{2}e^{-2b\phi}}},$$
$$\mathcal{L}=b+\alpha-\frac{b\varkappa^{2}e^{-2b\phi}}{1+\varkappa^{2}e^{-2b\phi}},$$

where \(b\) and \(\varkappa\) are arbitrary constants; their nature was discussed in more detail in [11].

Substituting the expressions obtained in Section 1 for the fields \(v(\lambda)\) and \(\phi(\lambda)\) into this formula, we infer the following exact expression for the generalized Lorentz force that acts on a particle in these fields:

$$\frac{d\mathbf{u}}{dt}=\frac{\varkappa}{A^{-\frac{b+\alpha}{\alpha}}\textrm{sn}^{\frac{b+\alpha}{2\alpha}}(\tau,k)}\frac{1}{\left(1+\frac{\varkappa^{2}}{A^{-\frac{2b}{\alpha}}\textrm{sn}^{\frac{2b}{\alpha}}(\tau,k)}\right)^{\frac{1}{2}}}$$
$${}\times\left(\frac{C_{1}}{A^{2}}\textrm{sn}^{2}(\tau,k)\nabla\lambda+C_{2}[\dot{\mathbf{r}}\times\nabla\lambda]\right)$$
$${}\mp\left(b+\alpha-\frac{b\varkappa^{2}}{A^{-\frac{2b}{\alpha}}\textrm{sn}^{\frac{2b}{\alpha}}(\tau,k)+\varkappa^{2}}\right)$$
$${}\times\frac{A|C_{2}|}{2}\frac{\textrm{cn}(\tau,k)\textrm{dn}(\tau,k)}{\textrm{sn}(\tau,k)}\left(\gamma^{-1}\nabla\lambda+\gamma(\dot{\mathbf{r}}\nabla\lambda)\dot{\mathbf{r}}\right).$$

The notations of all quantities involved in this formula have been introduced in Section 1.

The relevant expression for the force that acts on a test particle in the fields found in Section 2 can be written as follows:

$$\frac{d\mathbf{u}}{dt}=\frac{\varkappa}{A^{-\frac{b+\alpha}{\alpha}}\textrm{sc}^{\frac{b+\alpha}{2\alpha}}(\tau,k)}\frac{1}{\left(1+\frac{\varkappa^{2}}{A^{-\frac{2b}{\alpha}}\textrm{sc}^{\frac{2b}{\alpha}}(\tau,k)}\right)^{\frac{1}{2}}}$$
$${}\times\left(\frac{C_{1}}{A^{2}}\textrm{sc}^{2}(\tau,k)\nabla\lambda+C_{2}[\dot{\mathbf{r}}\times\nabla\lambda]\right)$$
$${}\mp\left(b+\alpha-\frac{b\varkappa^{2}}{A^{-\frac{2b}{\alpha}}\textrm{sc}^{\frac{2b}{\alpha}}(\tau,k)+\varkappa^{2}}\right)$$
$${}\times\frac{A|C_{2}|}{2}\frac{\textrm{dn}(\tau,k)}{\textrm{cn}(\tau,k)\textrm{sn}(\tau,k)}\left(\gamma^{-1}\nabla\lambda+\gamma(\dot{\mathbf{r}}\cdot\nabla\lambda)\dot{\mathbf{r}}\right).$$

Last, the force that acts on a test particle moving in the fields obtained in Section 3 is given by the expression

$$\frac{d\mathbf{u}}{dt}=\frac{\varkappa}{\left|\frac{C_{2}}{C_{1}}\right|^{\frac{b+\alpha}{2\alpha}}\left(\frac{1-\frac{g}{h}\textrm{sc}(\tau,k)}{1+\frac{g}{h}\textrm{sc}(\tau,k)}\right)^{\frac{b+\alpha}{\alpha}}}$$
$${}\times\frac{1}{\left(1+\frac{\varkappa^{2}}{\left|\frac{C_{2}}{C_{1}}\right|^{\frac{b}{\alpha}}\left(\frac{1-\frac{g}{h}\textrm{sc}(\tau,k)}{1+\frac{g}{h}\textrm{sc}(\tau,k)}\right)^{\frac{2b}{\alpha}}}\right)^{\frac{1}{2}}}$$
$${}\times\bigg{(}C_{1}\left|\frac{C_{2}}{C_{1}}\right|\left(\frac{1-\frac{g}{h}\textrm{sc}(\tau,k)}{1+\frac{g}{h}\textrm{sc}(\tau,k)}\right)^{2}\nabla\lambda+C_{2}[\dot{\mathbf{r}}\times\nabla\lambda]\bigg{)}$$
$${}\mp\left(b+\alpha-\frac{b\varkappa^{2}}{\left|\frac{C_{2}}{C_{1}}\right|^{\frac{b}{\alpha}}\left(\frac{1-\frac{g}{h}\textrm{sc}(\tau,k)}{1+\frac{g}{h}\textrm{sc}(\tau,k)}\right)^{\frac{2b}{\alpha}}+\varkappa^{2}}\right)$$
$${}\times\frac{gh^{3}}{2}\frac{\textrm{dn}(\tau,k)}{h^{2}\textrm{cn}^{2}(\tau,k)-g^{2}\textrm{sn}^{2}(\tau,k)}$$
$${}\times\left(\gamma^{-1}\nabla\lambda+\gamma(\dot{\mathbf{r}}\nabla\lambda)\dot{\mathbf{r}}\right).$$

The last formula uses, by analogy with the previous sections, the notation \(\tau=\mp\frac{\alpha h^{2}}{4}\lambda+\Lambda_{0}\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kechkin, O.V., Mosharev, P.A. A General Harmonic Solution in Dilaton Electrodynamics: An Exact Expression for the Fields and the Generalized Lorentz Force. Moscow Univ. Phys. 75, 427–433 (2020). https://doi.org/10.3103/S002713492005015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713492005015X

Keywords:

Navigation