Skip to main content
Log in

Equilibrium Point and Phase Portrait of a Model for Flow of Tixotropic Media Accounting for Structure Evolution

  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

We continue the systematic analytical study of a nonlinear Maxwell-type constitutive equation for shear flow for thixotropic viscoelastic media accounting for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. We formulated it in the previous article and reduced it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, the stress and relative cross-links density). We examine the phase portrait of the system for arbitrary (increasing) material function and six (positive) material parameters governing the model and prove that the (unique) equilibrium point is stable and the only three cases are realized: the equilibrium point is either a stable sink, or a degenerated stable sink, or a stable spiral sink. We found criteria for every case in the form of explicit restrictions on the material function and parameters and shear rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. M. Stolin and A. V. Khokhlov, ‘‘Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis,’’ Moscow Univ. Mech. Bull. 77, 127–135 (2022). https://doi.org/10.3103/s0027133022050065

    Article  MATH  Google Scholar 

  2. E. C. Bingham, Fluidity and Plasticity (McGraw-Hill, New York, 1922).

    Google Scholar 

  3. M. Reiner, ‘‘Rheology,’’ in Elasticity and Plasticity / Elastizitat und Plastizitat, Ed. by S. Flügge, Handbuch der Physik / Encyclopedia of Physics, Vol. 6 (Springer, Berlin, 1958), pp. 434–550. https://doi.org/10.1007/978-3-642-45887-3_4

  4. P. A. Rehbinder, Surface Phenomena in Disperse Systems: Colloid Chemistry: Selected Works (Nauka, Moscow, 1978).

    Google Scholar 

  5. B. D. Coleman, H. Markovitz, and W. Noll, Viscometric Flows of Non-Newtonian Fluids: Theory and Experiment, Springer Tracts in Natural Philosophy, Vol. 5 (Springer, Berlin, 1966). https://doi.org/10.1007/978-3-642-88655-3

  6. Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Leningrad, 1975; Dover, 1955).

  7. G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers (Khimiya, Moscow, 1977; Springer, Berlin, 1980).

  8. E. E. Bibik, Rheology of Disperse Systems (Leningrad. Univ., Leningrad, 1981).

    Google Scholar 

  9. G. M. Bartenev and Yu. V. Zelenev, Physics and Mechanics of Polymers (Vysshaya Shkola, Moscow, 1983).

    Google Scholar 

  10. R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworth Series in Chemical Engineering (Butterworth, Boston, 1988). https://doi.org/10.1016/C2013-0-04284-3

    Book  Google Scholar 

  11. N. B. Ur’ev, Physicochemical Foundations of Technology of Disperse Systems and Materials (Khimiya, Moscow, 1988).

    Google Scholar 

  12. A. I. Leonov and A. N. Prokunin, Non-Linear Phenomena in Flows of Viscoelastic Polymer Fluids (Springer, Dordrecht, 1994). https://doi.org/10.1007/978-94-011-1258-1

    Book  Google Scholar 

  13. C. Macosko, Rheology: Principles, Measurements and Applications (VCH, New York, 1994).

    Google Scholar 

  14. G. Schramm, A Practical Approach to Rheology and Rheometry (Gebrueder Haake, Karlsruhe, 1994).

    Google Scholar 

  15. C. L. Rohn, Analytical Polymer Rheology (Hanser Publishers, Munich, 1995).

    Google Scholar 

  16. R. G. Larson, Structure and Rheology of Complex Fluids (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  17. R. K. Gupta, Polymer and Composite Rheology (Marcel Dekker, New York, 2000). https://doi.org/10.1201/9781482273700

    Book  Google Scholar 

  18. R. I. Tanner, Engineering Rheology (Oxford Univ. Press, Oxford, 2000).

    Book  MATH  Google Scholar 

  19. A. Y. Malkin and A. I. Isayev, Rheology: Concepts, Methods, and Applications (ChemTec Publishing, Toronto, 2012). https://doi.org/10.1016/C2011-0-04626-4

    Book  Google Scholar 

  20. J. Vlachopoulos and N. Polychronopoulos, ‘‘Basic concepts in polymer melt rheology and their importance in processing,’’ in Applied Polymer Rheology: Polymeric Fluids with Industrial Applications, Ed. by M. Kontopoulou (Wiley, 2012), pp. 1–27. https://doi.org/10.1002/9781118140611.ch1

    Book  Google Scholar 

  21. E. A. Kirsanov and V. N. Matveenko, Non-Newtonian Behavior of Structured Systems (Tekhnosfera, Moscow, 2016).

    Google Scholar 

  22. A. M. Stolin, A. Ya. Malkin, and A. G. Merzhanov, ‘‘Non-isothermal processes and methods of investigation in the chemistry and mechanics of polymers,’’ Russ. Chem. Rev. 48, 798–811 (1979). https://doi.org/10.1070/rc1979v048n08abeh002412

    Article  ADS  Google Scholar 

  23. A. N. Prokunin, ‘‘On the non-linear Maxwell-type defining equations for describing the motions of polymer liquids,’’ J. Appl. Math. Mech. 48, 699–706 (1984). https://doi.org/10.1016/0021-8928(84)90037-6

    Article  MathSciNet  MATH  Google Scholar 

  24. A. I. Leonov, ‘‘Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data,’’ in Advances in the Flow and Rheology of Non-Newtonian Fluids, Ed. by D. A. Siginer, D. De Kee, and R. P. Chhabra, Rheology Series, Vol. 8 (Elsevier, 1999), pp. 519–575. https://doi.org/10.1016/s0169-3107(99)80040-9

  25. J. J. Stickel and R. L. Powell, ‘‘Fluid mechanics and rheology of dense suspensions,’’ Annu. Rev. Fluid Mech. 37, 129–149 (2005). https://doi.org/10.1146/annurev.fluid.36.050802.122132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Mueller, E. W. Llewellin, and H. M. Mader, ‘‘The rheology of suspensions of solid particles,’’ Proc. R. Soc. A 466, 1201–1228 (2010). https://doi.org/10.1098/rspa.2009.0445

    Article  ADS  Google Scholar 

  27. A. Ya. Malkin and S. A. Patlazhan, ‘‘Wall slip for complex liquids—Phenomenon and its causes,’’ Adv. Colloid Interface Sci. 257, 42–57 (2018). https://doi.org/10.1016/j.cis.2018.05.008

    Article  Google Scholar 

  28. A. M. Stolin, S. I. Khudyaev, and L. M. Buchatskii, ‘‘Theory of viscosity superanomaly of structured systems,’’ Dokl. Aakd. Nauk SSSR 243, 430–433 (1978).

    Google Scholar 

  29. A. M. Stolin and V. I. Irzhak, ‘‘Structurally non-uniform flow regimes in process of polymer fiber formation,’’ Vysokomoleul. Soedin. B. Kratke Soobshch. 35, 902–904 (1993).

    Google Scholar 

  30. N. A. Belyaeva, A. M. Stolin, and L. S. Stel’makh, ‘‘Modes of solid-phase extrusion of viscoelastic structured systems,’’ Inzh. Fiz., No. 1, 10–16 (2009).

  31. J. F. Brady and J. F. Morris, ‘‘Microstructure of strongly sheared suspensions and its impact on rheology and diffusion,’’ J. Fluid Mech. 348, 103–139 (1997). https://doi.org/10.1017/s0022112097006320

    Article  ADS  MATH  Google Scholar 

  32. C. L. Tucker and P. Moldenaers, ‘‘Microstructural evolution in polymer blends,’’ Annu. Rev. Fluid Mech. 34, 177–210 (2002). https://doi.org/10.1146/annurev.fluid.34.082301.144051

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Ya. Malkin and V. G. Kulichikhin, ‘‘Structure and rheology of highly concentrated emulsions: A modern look,’’ Russ. Chem. Rev. 84, 803–825 (2015). https://doi.org/10.1070/rcr4499

    Article  ADS  Google Scholar 

  34. K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Engineering Materials (Springer, Berlin, 2001). https://doi.org/10.1007/978-3-662-04367-7

  35. M. E. Eglit, A. E. Yakubenko, and Yu. S. Zayko, ‘‘Mathematical modeling of slope flows of non-Newtonian media,’’ Proc. Steklov Inst. Math. 300, 219–229 (2018). https://doi.org/10.1134/S0081543818010194

    Article  MATH  Google Scholar 

  36. A. V. Khokhlov, ‘‘Properties of a nonlinear viscoelastoplastic model of Maxwell type with two material functions,’’ Moscow Univ. Mech. Bull. 71, 132–136 (2016). https://doi.org/10.3103/s0027133016060029

    Article  MATH  Google Scholar 

  37. A. V. Khokhlov, ‘‘The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,’’ Vestn. Samar. Gos. Tech. Univ. Ser. Fiz.-Mat. Nauki 21, 160–179 (2017). https://doi.org/10.14498/vsgtu1524

    Article  Google Scholar 

  38. A. V. Khokhlov, ‘‘A nonlinear Maxwell-Type model for rheonomic materials: Stability under symmetric cyclic loadings,’’ Moscow Univ. Mech. Bull. 73, 39–42 (2018). https://doi.org/10.3103/s0027133018020036

    Article  MATH  Google Scholar 

  39. A. V. Khokhlov, ‘‘Applicability indicators and identification techniques for a nonlinear Maxwell-type elasto-viscoplastic model using multi-step creep curves,’’ Vestn. Mosk. Gos. Tekh. Univ. N.E. Baumana. Ser. Estestv. Nauki, No. 81, 92–112 (2018). https://doi.org/10.18698/1812-3368-2018-6-92-112

    Article  Google Scholar 

  40. A. V. Khokhlov, ‘‘Applicability indicators and identification techniques for a nonlinear Maxwell-type elastoviscoplastic model using loading-unloading curves,’’ Mech. Compos. Mater. 55, 195–210 (2019). https://doi.org/10.1007/s11029-019-09809-w

    Article  ADS  Google Scholar 

  41. A. V. Khokhlov, ‘‘Possibility to describe the alternating and nonmonotonic time dependence of poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,’’ Russ. Metall. 2019, 956–963 (2019). https://doi.org/10.1134/s0036029519100136

    Article  ADS  Google Scholar 

  42. A. V. Khokhlov, A. V. Shaporev, and O. N. Stolyarov, ‘‘Loading-unloading-recovery curves for polyester yarns and identification of the nonlinear Maxwell-type viscoelastoplastic model,’’ Mech. Compos. Mater. 59, 129–146 (2023). https://doi.org/10.1007/s11029-023-10086-x

    Article  ADS  Google Scholar 

  43. A. V. Khokhlov, ‘‘Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification,’’ Mech. Solids 53, 307–328 (2018). https://doi.org/10.3103/s0025654418070105

    Article  ADS  Google Scholar 

  44. A. V. Khokhlov, ‘‘Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials,’’ Mech. Solids 54, 384–399 (2019). https://doi.org/10.3103/s002565441902002x

    Article  ADS  Google Scholar 

  45. A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Woodhead Publishing Series in Metals and Surface Engineering (Woodhead Publishing, Cambridge, 2010). https://doi.org/10.1533/9780857093837

  46. I. A. Ovid’ko, R. Z. Valiev, and Y. T. Zhu, ‘‘Review on superior strength and enhanced ductility of metallic nanomaterials,’’ Prog. Mater. Sci. 94, 462–540 (2018). https://doi.org/10.1016/j.pmatsci.2018.02.002

    Article  Google Scholar 

  47. A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, O. V. Rofman, and N. Yu. Tabachkova, ‘‘Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,’’ Mater. Sci. Eng., A 760, 37–46 (2019). https://doi.org/10.1016/j.msea.2019.05.099

    Article  Google Scholar 

  48. A. G. Mochugovskiy, A. O. Mosleh, A. D. Kotov, A. V. Khokhlov, L. Y. Kaplanskaya, and A. V. Mikhaylovskaya, ‘‘Microstructure evolution, constitutive modelling, and superplastic forming of experimental 6XXX-type alloys processed with different thermomechanical treatments,’’ Materials 16, 445 (2023). https://doi.org/10.3390/ma16010445

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Professor A.M. Stolin who formulated a prototype of model (1)–(3) with a fixed (exponential) material function and four material parameters, the generalization of which was investigated in this paper, and the suggestion to find out under which conditions the model has oscillating solutions.

Funding

The work is supported by the Russian Science Foundation, project no. 22-13-20056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khokhlov.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhlov, A.V. Equilibrium Point and Phase Portrait of a Model for Flow of Tixotropic Media Accounting for Structure Evolution. Moscow Univ. Mech. Bull. 78, 91–101 (2023). https://doi.org/10.3103/S0027133023040039

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027133023040039

Keywords:

Navigation