Skip to main content
Log in

Integral boundary layer relations in the theory of wave flows for capillary liquid films

  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

A generalized method of deriving the model equations is considered for wave flow regimes in falling liquid films. The viscous liquid equations are used on the basis of integral boundary layer relations with weight functions. A family of systems of evolution differential equations is proposed. The integer parameter n of these systems specifies the number of a weight function. The case n = 0 corresponds to the classical IBL (Integral Boundary Layer) model. The case n ≥ 1 corresponds to its modifications called the WIBL (Weighted Integral Boundary Layer) models. The numerical results obtained in the linear and nonlinear approximations for n = 0, 1, 2 are discussed. The numerical solutions to the original hydrodynamic differential equations are compared with experimental data. This comparison leads us to the following conclusions: as a rule, the most accurate solutions are obtained for n = 0 in the case of film flows on vertical and inclined solid surfaces and the accuracy of solutions decreases with increasing n. Hence, the classical IBL model has an advantage over the WIBL models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Kapitsa and S. P. Kapitsa, “Wave Flow of Thin Layers of a Viscous Liquid,” Zh. Eksp. Teor. Fiz. 19 (2), 105–120 (1949).

    ADS  MATH  Google Scholar 

  2. P. L. Kapitsa, “Wave Flow of Thin Layers of Viscous Liquid,” Zh. Eksp. Teor. Fiz. 18 (1), 3–18 (1948).

    ADS  Google Scholar 

  3. V. Ya. Shkadov, “Wave Flow Regimes of a Thin Layer of Viscous Fluid Subject to Gravity,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 43–51 (1967) [Fluid Dyn. 2 (1), 29–34 (1967)].

    Google Scholar 

  4. L. P. Kholpanov and V. Ya. Shkadov, Hydrodynamics and Heat and Mass Transfer at Interfaces (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  5. S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev, Wave Flow of Liquid Films (Nauka, Novosibirsk, 1992; Begell House, New York, 1994).

    MATH  Google Scholar 

  6. H.-C. Chang and E. A. Demekhin, Complex Wave Dynamics on Thin Films (Elsevier, Amsterdam, 2002).

    Google Scholar 

  7. A. A. Nepomnyashchy, M. G. Velarde, and P. Colinet, Interfacial Phenomena and Convection (CRC Press, Boca Raton, 2002).

    MATH  Google Scholar 

  8. S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films (Springer, London, 2011).

    MATH  Google Scholar 

  9. R. Kh. Zeytounian, “The B´enard–Marangoni Thermocapillary-Instability Problem,” Usp. Fiz. Nauk 168 (3), 259–286 (1998) [Phys. Usp. 41 (3), 241–267 (1998)].

    Article  Google Scholar 

  10. V. Y. Shkadov, “Hydrodynamics of Slopped Falling Films,” in Interfacial Phenomena and the Marangoni Effect (Springer, New York, 2002), pp. 191–224.

    Google Scholar 

  11. V. Ya. Shkadov and E. A. Demekhin, “Wave Flow of Liquid Films on a Vertical Surface (a Theory to Interpret Experiments),” Usp. Mekh. 4 (2), 3–65 (2006).

    Google Scholar 

  12. V. Ya. Shkadov and G. M. Sisoev, “Wavy Falling Liquid Films: Theory and Computation Instead of Physical Experiment,” in Proc. IUTAM Symp. on Nonlinear Waves in Multi-Phase Flow (Kluwer, Dordrecht, 2000), Vol. 57, pp. 1–10.

    Article  MathSciNet  Google Scholar 

  13. V. Ya. Shkadov, G. M. Velarde, and V. P. Shkadova, “Falling Films and the Marangoni Effect,” Phys. Rev. E 69 (2004). doi 10.1103/PhysRevE.69.056310

  14. Y. Y. Trifonov, “Stability and Bifurcations of the Wavy Film Flow down a Vertical Plate: The Results of Integral Approaches and Full-Scale Computations, Fluid Dyn. Res. 44 (2012). doi 10.1088/0169-5983/44/3/031418

  15. N. E. Kochin, I. A. Kibel, and N. V. Rose, Theoretical Hydromechanics (Gos. Izd. Fiz. Mat. Lit., Moscow, 1963; Interscience Publ., New York, 1964), Vol.2.

  16. V. Ya. Shkadov, “A Two-Parameter Model of Wave Regimes for Viscous Liquid Film Flows,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 24–31 (2013) [Moscow Univ. Mech. Bull. 68 (4), 86–93 (2013)].

    Google Scholar 

  17. V. Ya. Shkadov, “Solitary Waves in a Layer of Viscous Liquid,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 63–66 (1977) [Fluid Dyn. 12 (1), 52–55 (1977)].

    ADS  Google Scholar 

  18. C. Ruyer-Quil and P. Manneville, “Improved Modeling of Flows down Inclined Planes,” Eur. Phys. J. B 15, 357–369 (2000).

    Article  ADS  MATH  Google Scholar 

  19. S. P. Aktershev and S. V. Alekseenko, “Model of a Wavy Flow in a Falling Film of a Viscous Liquid,” Zh. Prikl. Mekh. Tekh. Fiz. 54 (2), 21–31 (2013) [J. Appl. Mech. Tech. Phys. 54 (2), 185–194 (2013)].

    MATH  Google Scholar 

  20. C. Ruyer-Quil and P. Manneville, “Modeling Film Flows down Inclined Planes,” Eur. Phys. J. B 6 (2), 277–292 (1998).

    Article  ADS  MATH  Google Scholar 

  21. E. A. Demekhin, G. Yu. Tokarev, and V. Ya. Shkadov, “On the Existence of a Critical Reynolds Number for a Liquid Film Falling by Gravity,” Teor. Osn. Khim. Tekhnol. 21 (4), 555–559 (1987).

    Google Scholar 

  22. G. M. Sisoev and V. Ya. Shkadov, “Development of Dominating Waves From Small Disturbances in Falling Viscous-Liquid Films,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 30–41 (1997) [Fluid Dyn. 32 (6), 784–792 (1997)].

    MathSciNet  MATH  Google Scholar 

  23. J. Liu and J. P. Gollub, “Solitary Wave Dynamics of Film Flows,” Phys. Fluids 6, 1702–1712 (1994).

    Article  ADS  Google Scholar 

  24. A. V. Bunov, E. A. Demekhin, and V. Ya. Shkadov, “On the Non-Uniqueness of Non-Linear Wave Solutions in a Viscous Layer,” Prikl. Mat. Mekh. 48 (4), 691–696 (1984) [J. Appl. Math. Mech. 48 (4), 495–499 (1984)].

    MathSciNet  MATH  Google Scholar 

  25. E. A. Demekhin, G. Yu. Tokarev, and V. Ya. Shkadov, “Hierarchy of Bifurcations of Space-Periodic Structures in a Nonlinear Model of Active Dissipative Media,” Physica D 5 (2–3), 338–361 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. V. Ya. Shkadov, “Wave-Flow Theory for a Thin Viscous Liquid Layer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 20–25 (1968) [Fluid Dyn. 3 (2), 12–15 (1968)].

    Google Scholar 

  27. G. M. Sisoev and V. Ya. Shkadov, “Dominant Waves in a Viscous Liquid Flowing in a Thin Sheet,” Dokl. Akad. Nauk 357 (4), 483–486 (1997) [Phys. Dokl. 42 (12), 683–686 (1997)].

    MATH  Google Scholar 

  28. A. V. Bunov, E. A. Demekhin, and V. Ya. Shkadov, “Bifurcation of Solitary Waves in a Flowing Layer of Liquid,” Vestn. Mosk. Univ. Ser. 1: Mat. Mekh., No. 2, 73–78 (1986) [Moscow Univ. Mech. Bull. 41 (2), 36–42 (1986)].

    MATH  Google Scholar 

  29. E. A. Demekhin and V. Ya. Shkadov, “On the Theory of Solitons in Systems with Dissipation,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 91–97 (1986) [Fluid Dyn. 21 (3), 415–420 (1986)].

    ADS  MathSciNet  MATH  Google Scholar 

  30. H.-C. Chang, E. A. Demekhin, and E. Kalaidin, “Simulation of Noise-Driven Wave Dynamics on a Falling Film,” AIChE J. 42 (6), 1553–1568 (1996).

    Article  Google Scholar 

  31. C. Ruyer-Quil and P. Manneville, “On the Speed of Solitary Waves Running down a Vertical Wall,” J. Fluid Mech. 531, 181–190 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. E. A. Demekhin, G. Yu. Tokarev, and V. Ya. Shkadov, “Two-Dimensional Unsteady Waves on a Vertical Liquid Film,” Teor. Osn. Khim. Tekhnol. 21 (2), 177–183 (1987).

    Google Scholar 

  33. D. A. Tushkanov and V. Ya. Shkadov, “Nonlinear Waves in a Liquid Film on a Near-Horizontal Surface,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 11–24 (2006) [Fluid Dyn. 41 (3), 330–342 (2006)].

    MathSciNet  MATH  Google Scholar 

  34. J. Liu, J. D. Paul, and J. P. Gollub, “Measurements of the Primary Instabilities of Film Flows,” J. Fluid Mech. 250, 69–101 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.Ya. Shkadov.

Additional information

Original Russian Text © V.Ya. Shkadov, A.N. Beloglazkin, 2017, published in Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 2017, Vol. 72, No. 6, pp. 38–50.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkadov, V., Beloglazkin, A. Integral boundary layer relations in the theory of wave flows for capillary liquid films. Moscow Univ. Mech. Bull. 72, 133–144 (2017). https://doi.org/10.3103/S0027133017060024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027133017060024

Navigation