Skip to main content
Log in

Experimental and theoretical determination of Young’s modulus for a composite material made of phenolic resins reinforced by short fibers

  • Brief Communications
  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

The elastic moduli of a composite material made of high-temperature modified phenolic resins with short carbon fibers are studied. Several analytical formulas used to determine the effective moduli of such composites are compared and experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bulgakov, D. Kalugin, A. Babkin, et al., “Synthesis and Characterization of Cured Allyl/Propargyl Ether Novolac Resins,” J. Chem. Chem. Eng., No. 7, 199–208 (2013).

    Google Scholar 

  2. H. L. Cox, “The Elasticity and Strength of Paper and Other Fibrous Materials,” Brit. J. Appl. Phys. 3 (3), 72–79 (1952).

    Article  ADS  Google Scholar 

  3. T. Thorvaldsen, A Model Study of the Effective Young’s Modulus for Randomly Distributed Short-Fiber Composites, Report FFD2011/00212 (Norwegian Defence Res. Establishment, Kjeller, 2011).

    Google Scholar 

  4. R. M. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  5. B. E. Pobedrya, Mechanics of Composite Materials (Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  6. W. B. Russel, “On the Effective Moduli of Composite Materials: Effect of Fiber Length and Geometry at Dilute Concentrations,” J. Appl. Math. Phys. 24 (4), 581–600 (1973).

    Article  Google Scholar 

  7. Z. Hashin and B. W. Rosen, “The elastic moduli of fiber-reinforced materials,” J. Appl. Mech. 31 (2), 223–232 (1964).

    Article  ADS  Google Scholar 

  8. J. D. Eshelby, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,” Proc. Roy. Soc. London A 241 (1226), 376–396 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R. M. Christensen and F. M. Waals, “Effective Stiffness of Randomly Oriented Fibre Composites,” J. Compos. Mater. 6, 518–532 (1972).

    Article  ADS  Google Scholar 

  10. R. E. Lavengood and L. A. Goettler, Stiffness of Non-Aligned Fiber Reinforced Composites, US Gov. R&D Report AD886372 (Nat. Techn. Inf. Serv., Springfield, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sheshenin.

Additional information

Original Russian Text © S.V. Sheshenin, P.V. Chistyakov, V.V. Galatenko, D.I. Kalugin, O.N. Shornikova, A.P. Malakho, 2015, published in Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 2015, Vol. 70, No. 4, pp, 61-65.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheshenin, S.V., Chistyakov, P.V., Galatenko, V.V. et al. Experimental and theoretical determination of Young’s modulus for a composite material made of phenolic resins reinforced by short fibers. Moscow Univ. Mech. Bull. 70, 92–96 (2015). https://doi.org/10.3103/S0027133015040032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027133015040032

Keywords

Navigation