Skip to main content
Log in

General solutions of weakened equations in terms of stresses in the theory of elasticity

  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

The general solutions of some weakened systems of equations expressed in terms of stresses in the isotropic theory of elasticity are analyzed. These systems are not equivalent to the classical one and involve the equilibrium equations and only three of the six equations of compatibility (either diagonal or off-diagonal ones). In the framework of elasticity theory, an equivalence of the formulations of quasistatic boundary value problems based on such systems and expressed in terms of stresses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Georgievskii and B. E. Pobedrya, “The Number of Independent Compatibility Equations in the Mechanics of Deformable Solids,” Prikl. Mat. Mekh. 68(6), 1043–1048 (2004) [J. Appl. Math. Mech. 68 (6), 941–946 (2004)].

    MathSciNet  Google Scholar 

  2. B. E. Pobedrya and D. V. Georgievskii, “Equivalence of Formulations for Problems in Elasticity Theory in Terms of Stresses,” Russ. J. Math. Phys. 13(2), 203–209 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. E. Pobedrya, Numerical Methods in the Theory of Elasticity and Plasticity (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  4. X. Markenscoff, “A Note of Strain Jump Conditions and Cesáro Integrals for Bonded and Slipping Inclusions,” J. Elasticity 45(1), 45–51 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Volterra, “Sur l’Équilibre des Corps Elastiques Multipliment Connexes,” Ann. l’École Norm. Sup. 24, 401–517 (1907).

    MathSciNet  MATH  Google Scholar 

  6. E. Kroner, Kontinuumstheorie der Versetzungen und Eigenspannungen (Springer, Berlin, 1958).

    Book  Google Scholar 

  7. E. Cesáro, “Sulle Formole del Volterra, Fondamentali Nella Teoria Delle Distorsioni Elastiche,” Rend. Acad. R. di Napoli. 12(1), 311–321 (1906).

    MATH  Google Scholar 

  8. P. G. Ciarlet, L. Gratie, and C. Mardare, “A Generalization of the Classical Cesáro-Volterra Path Integral Formula,” C. R. Acad. Sci. Paris. Ser. I. 347, 577–582 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. M. Filonenko-Borodich, Theory of Elasticity (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  10. B. E. Pobedrya, “A New Formulation of the Problem in Mechanics of a Deformable Solid Body under Stress,” Dokl. Akad. Nauk SSSR 253(2), 295–297 (1980) [Sov. Math. Dokl. 22 (2), 88–91 (1980)].

    MathSciNet  Google Scholar 

  11. B. E. Pobedrya, “Static Problem in Stresses,” Vestn. Mosk. Univ. Ser. 1: Mat. Mekh., No. 3, o61–67 (2003) [Moscow Univ. Mech. Bull. 58 (3), 6–12 (2003)].

    Google Scholar 

  12. V. A. Kucher, X. Markenscoff, and M. V. Paukshto, “Some Properties of the Boundary Value Problem of Linear Elasticity in Terms of Stresses,” J. Elasticity 74(2), 135–145 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. Sh. Li, A. Gupta, and X. Markenscoff, “Conservation Laws of Linear Elasticity in Stress Formulations,” Proc. Roy. Soc. London. Ser. A. Math. Phys. and Eng. Sci. 461(2053), 99–116 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. N. M. Borodachev, “Solutions of Spatial Problem of Elasticity Theory in Stresses,” Prikl. Mekh. 42(8), 74–82 (2006) [Int. Appl. Mech. 42 (8), 849–878 (2006)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D. V. Georgievskii, 2012, published in Vestnik Moskovskogo Universiteta, Matematika, Mekhanika. 2012. Vol. 67, No. 6. pp 26–32.

About this article

Cite this article

Georgievskii, D.V. General solutions of weakened equations in terms of stresses in the theory of elasticity. Moscow Univ. Mech. Bull. 68, 1–7 (2013). https://doi.org/10.3103/S0027133013010019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027133013010019

Keywords

Navigation