Skip to main content
Log in

Engineering the Active Site of Formate Dehydrogenase from Staphylococcus aureus: Introduction of the Additional Loop and Histigine Residues to the Structure

  • ORIGINAL ARTICLE
  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

NAD+-dependent formate dehydrogenase (EC 1.2.1.2, FDH) from pathogenic bacterium Staphylococcus aureus (SauFDH) differs significantly from other FDHs both in terms of primary structure and catalytic properties. A distinctive feature of SauFDH is the highest (about 2.5–3 times) specific activity compared to other formate dehydrogenases. At the same time, SauFDH has high Michaelis constants for both substrates. Based on the analysis of three-dimensional structures and the alignment of amino acid sequences, replacements promising in terms of changing catalytic parameters were selected. The replacement of I220H resulted in an increase in \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\); the value of kcat has not changed. When T250H is replaced, an increase in \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\) is observed, kcat decreases from 20 to 13 s–1. The replacement of K368H led to a slight increase in \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\), kcat decreased from 20 to 6 s–1. The introduction of TGA and AGA additional inserts in α-helix at the C-terminus of the enzyme led to an increase in \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\) and \(K_{{\text{M}}}^{{{\text{HCO}}{{{\text{O}}}^{ - }}}}\). A bigger effect was observed for \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\)—the difference was more than 10 times. For mutant SauFDH with insertions kcat significantly reduced to 4 s–1. Similar results were observed for mutants with multipoint replacements. Thus, the C-terminal sequence has been shown to play an important role in the catalysis of SauFDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Tishkov, V.I. and Popov, V.O., Biochemistry (Moscow), 2004, vol. 69, no. 11, p. 1252. https://doi.org/10.1007/s10541-005-0071-x

    Article  CAS  PubMed  Google Scholar 

  2. Tishkov, V.I. and Popov, V.O., Biomol. Eng., 2006, vol. 23, p. 89. https://doi.org/10.1016/j.bioeng.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  3. Alekseeva, A.A., Savin, S.S., and Tishkov, V.I., Acta Nat., 2011, vol. 3, no. 4, p. 38. https://doi.org/10.32607/20758251-2011-3-4-38-54

    Article  CAS  Google Scholar 

  4. Resch, A., Rosenstein, R., Nerz, C., and Götz, F., Appl. Environ. Microbiol., 2005, vol. 71, no. 5, p. 2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tishkov, V.I., Goncharenko, K.V., Alekseeva, A.A., Kleymenov, S.Yu., and Savin, S.S., Biochemistry (Moscow), 2015, vol. 80, no. 13, p. 1690.

    Article  CAS  PubMed  Google Scholar 

  6. Ernst, M., Kaup, B., Muller, M., Bringer-Meyer, S., and Sahm, H., Appl. Microbiol. Biotechnol., 2005, vol. 66, no. 6, p. 629.

    Article  CAS  PubMed  Google Scholar 

  7. Weckbecker, A., Groger, H., and Hummel, W., Adv. Biochem. Eng. Biotechnol., 2010, vol. 120, p. 195.

    CAS  PubMed  Google Scholar 

  8. Liu, Q., Zhou, J., Yang, T., Zhang, X., Xu, M., and Rao, Z., Appl. Microbiol. Biotechnol., 2018, vol. 102, no. 5, p. 2129.

    Article  CAS  PubMed  Google Scholar 

  9. Tishkov, V.I., Pometun, A.A., Stepashkina, A.V., Fedorchuk, V.V., Zarubina, S.A., Kargov, I.S., Atroshenko, D.L., Parshin, P.D., Shelomov, M.D., Kovalevski, R.P., Boiko, K.M., Eldarov, M.A., D’Oronzo, E., Facheris, S., Secundo, F., and Savin, S.S., Moscow Univ. Chem. Bull., 2018, vol. 73, no. 1, p. 1. https://doi.org/10.3103/S0027131418020153

    Article  Google Scholar 

  10. Pometun, A.A., Boyko, K.M., Yurchenko, T.S., Nikolaeva, A.Y., Kargov, I.S., Atroshenko, D.L., Savin, S.S., Popov, V.O., and Tishkov, V.I., Biochemistry (Moscow), 2020, vol. 85, no. 6, p. 689. https://doi.org/10.1134/S0006297920060061

    Article  CAS  PubMed  Google Scholar 

  11. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., and Hassabis, D., Nature, 2021, vol. 596, no. 7873, p. 583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M., Nat. Methods, 2022, vol. 19, no. 6, p. 679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K., Acta Crystallogr., Sect. D, 2010, vol. 66, no. 4, p. 486.

    Article  CAS  Google Scholar 

  14. Alekseeva, A.A., Savin, S.S., Kleimenov, S.Y., Uporov, I.V., Pometun, E.V., and Tishkov, V.I., Biochemistry (Moscow), 2012, vol. 77, no. 10, p. 1199. https://doi.org/10.1134/S0006297912100124

    Article  CAS  PubMed  Google Scholar 

  15. Bradford, M.M., A, Anal. Biochem., 1976, vol. 72, p. 248.

    Article  CAS  PubMed  Google Scholar 

  16. Fogal, S., Beneventi, E., Cendron, L., and Bergantino, E., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 22, p. 9541.

    Article  CAS  PubMed  Google Scholar 

  17. Sadykhov, E.G., Serov, A.E., Voinova, N.S., Uglanova, S.V., Petrov, A.S., Alekseeva, A.A., Kleimenov, S.Y., Popov, V.O., and Tishkov, V.I., Appl. Biochem. Microbiol., 2006, vol. 42, no. 3, p. 236.

    Article  CAS  Google Scholar 

  18. Baker, P.J., Britton, K.L., Rice, D.W., Rob, A., and Stillman, T.J., J. Mol. Biol., 1992, vol. 228, p. 662. https://doi.org/10.1016/0022-2836(92)90848-e

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was carried out with partial financial support of the Russian Foundation for Basic Research (project no. 20-04-00915) and partially as a part of state research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pometun.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iurchenko, T.S., Loginova, A.A., Sergeev, E.P. et al. Engineering the Active Site of Formate Dehydrogenase from Staphylococcus aureus: Introduction of the Additional Loop and Histigine Residues to the Structure. Moscow Univ. Chem. Bull. 78, 42–53 (2023). https://doi.org/10.3103/S0027131423010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131423010078

Keywords:

Navigation