Skip to main content
Log in

On Kinematic Description of the Motion of a Rigid Body

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A system of ordinary differential equations has been derived for a vector of finite rotation corresponding to Euler’s theorem: the vector of finite rotation is directed along the axis of finite rotation of a solid, and its length is equal to the angle of plane rotation around this axis. The system of equations is explicitly resolved with respect to the time derivative of the rotation vector components. The right part of the system depends on the rotation vector and the angular velocity vector in the principle axes. The obtained system of equations is shown to be equivalent to the system of equations for quaternions. The coordinates of the orts of the principle axes of a rigid body in fixed axes are expressed in terms of finite rotation angles and the components of angular velocity using simple analytical formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. F. Zhuravlev, Fundamentals of Theoretical Mechanics (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  2. V. N. Branets and I. P. Shmygalevskii, Quaternions Application for Problems on Solids Orientation (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  3. Yu. F. Golubev, Fundamentals of Theoretical Mechanics. Student’s Book, 2nd ed. (MSU, Moscow, 2000) [in Russian].

    Google Scholar 

  4. Yu. N. Chelnokov, Quaternion and Biquaternion Models and Methods of Solid Mechanics and Their Application (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  5. J. S. Dai, “Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections,” Mech. Mach. Theory 92, 144–152 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to V.F. Zhuravlev for discussion of the results and useful comments.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Petrov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

1.1 A1 DERIVATION OF A FORMULA FOR ANGULAR VELOCITY IN PRINCIPAL AXES

According to Eq. (4.1), the matrix \(A(\boldsymbol\omega )\) is equal to a product of two matrices

$$\begin{gathered} \frac{d}{{dt}}C(\boldsymbol\varphi ) = (A({\mathbf{e}})\cos \theta + A{{({\mathbf{e}})}^{2}}\sin \theta )\dot {\theta } + A({\mathbf{\dot {e}}})\sin \theta + (A({\mathbf{\dot {e}}})A({\mathbf{e}}) + A({\mathbf{e}})A({\mathbf{\dot {e}}}))(1 - \cos \theta ), \\ C( - \boldsymbol\varphi ) = E - A({\mathbf{e}})\sin \theta + A{{({\mathbf{e}})}^{2}}(1 - \cos \theta ). \\ \end{gathered} $$

It can be represented in the form

$$\begin{gathered} A(\boldsymbol\omega ) = \left( {\frac{d}{{dt}}C(\boldsymbol\varphi )} \right)C( - \boldsymbol\varphi ) = \dot {\theta }F + \sin \theta {{F}_{1}} + {{\sin }^{2}}\theta {{F}_{2}} \\ \, + (1 - \cos \theta ){{F}_{3}} + {{(1 - \cos \theta )}^{2}}{{F}_{4}} + \sin \theta (1 - \cos \theta ){{F}_{5}}. \\ \end{gathered} $$
(A1.1)

Using equalities (2.2) and

$$\begin{gathered} {\mathbf{e}} \cdot {\mathbf{\dot {e}}} = 0,\quad A({\mathbf{e}})A({\mathbf{\dot {e}}})A({\mathbf{e}}){\mathbf{R}} = {\mathbf{e}} \times ({\mathbf{\dot {e}}} \times ({\mathbf{e}} \times {\mathbf{R}})) = {\mathbf{e}} \times {\mathbf{e}}\,({\mathbf{\dot {e}}} \cdot {\mathbf{R}}) = 0, \\ A({\mathbf{e}})A({\mathbf{\dot {e}}})A({\mathbf{e}})A({\mathbf{e}}){\mathbf{R}} = {\mathbf{e}} \times ({\mathbf{\dot {e}}} \times ({\mathbf{e}} \times ({\mathbf{e}} \times {\mathbf{R}}))) = {\mathbf{e}} \times ({\mathbf{\dot {e}}} \times ({\mathbf{e}}({\mathbf{e}} \cdot {\mathbf{R}}) - {\mathbf{R}})) \\ \, = {\mathbf{\dot {e}}}\,({\mathbf{e}} \cdot {\mathbf{R}}) - {\mathbf{\dot {e}}}\,({\mathbf{e}} \cdot {\mathbf{R}}) = 0, \\ \end{gathered} $$

we sequentially find

$$\begin{gathered} F = A({\mathbf{e}}),\quad {{F}_{1}} = A({\mathbf{\dot {e}}}),\quad {{F}_{2}} = - A({\mathbf{\dot {e}}})A({\mathbf{e}}),\quad {{F}_{3}} = A({\mathbf{\dot {e}}})A({\mathbf{e}}) + A({\mathbf{e}})A({\mathbf{\dot {e}}}), \\ {{F}_{4}} = \left( {A({\mathbf{\dot {e}}})A({\mathbf{e}}) + A({\mathbf{e}})A({\mathbf{\dot {e}}})} \right)A{{({\mathbf{e}})}^{2}} = - A({\mathbf{\dot {e}}})A({\mathbf{e}}) + A({\mathbf{e}})A({\mathbf{\dot {e}}})A{{({\mathbf{e}})}^{2}} = - A({\mathbf{\dot {e}}})A({\mathbf{e}}), \\ {{F}_{5}} = A({\mathbf{\dot {e}}})A{{({\mathbf{e}})}^{2}} - A({\mathbf{\dot {e}}})A{{({\mathbf{e}})}^{2}} - A({\mathbf{e}})A({\mathbf{\dot {e}}})A({\mathbf{e}}) = 0. \\ \end{gathered} $$

Substituting the obtained formulas into (A1.1), we arrive at

$$A(\boldsymbol\omega ) = \dot {\theta }A({\mathbf{e}}) + \sin\theta A({\mathbf{\dot {e}}}) + (1 - \cos \theta )(A({\mathbf{e}})A({\mathbf{\dot {e}}}) - A({\mathbf{\dot {e}}})A({\mathbf{e}})).$$

The identity

$$(A({\mathbf{e}})A({\mathbf{\dot {e}}}) - A({\mathbf{\dot {e}}})A({\mathbf{e}})){\mathbf{R}} = {\mathbf{e}} \times ({\mathbf{\dot {e}}} \times {\mathbf{R}}) - {\mathbf{\dot {e}}} \times ({\mathbf{e}} \times {\mathbf{R}}) = ({\mathbf{e}} \times {\mathbf{\dot {e}}}) \times {\mathbf{R}}$$

yields that \(A({\mathbf{e}})A({\mathbf{\dot {e}}}) - A({\mathbf{\dot {e}}})A({\mathbf{e}}) = ({\mathbf{e}} \times {\mathbf{\dot {e}}})\) and

$$A(\boldsymbol\omega ) = A(\dot {\theta }{\mathbf{e}} + {\text{sin}}\theta {\mathbf{\dot {e}}} + (1 - {\text{cos}}\theta ){\mathbf{e}} \times {\mathbf{\dot {e}}}),$$
(A1.2)

which proves Eq. (4.4).

1.2 A2 DERIVATION OF AN EQUATION FOR ANGULAR VELOCITY IN MOVING AXES

Euler’s law for the velocity distribution in rigid body axes (RCS) has the form

$$\begin{gathered} {{{\mathbf{v}}}_{*}} = C( - \boldsymbol\varphi ){\mathbf{v}} = C( - \boldsymbol\varphi )A(\boldsymbol\omega ){\mathbf{R}} = C( - \boldsymbol\varphi )\frac{d}{{dt}}C(\boldsymbol\varphi )C( - \boldsymbol\varphi ){\mathbf{R}} \\ \, = C( - \boldsymbol\varphi )\frac{d}{{dt}}C(\boldsymbol\varphi )C( - \boldsymbol\varphi )C(\boldsymbol\varphi ){{{\mathbf{R}}}_{*}} \\ \Rightarrow {{{\mathbf{v}}}_{*}} = A({{\boldsymbol\omega }_{*}}){{{\mathbf{R}}}_{*}},\quad A({{\boldsymbol\omega }_{*}}) = C( - \boldsymbol\varphi )\left( {\frac{d}{{dt}}C(\boldsymbol\varphi )} \right). \\ \end{gathered} $$
(A2.1)

Identity (4.2) can be used to represent Eq. (A1.2) as

$$ - A(\boldsymbol\omega ) = C(\boldsymbol\varphi )\left( {\frac{d}{{dt}}C( - \boldsymbol\varphi )} \right) = A\left( { - \dot {\theta }\,{\mathbf{e}} - \sin\theta \,{\mathbf{\dot {e}}} - (1 - \cos \theta )\,{\mathbf{e}} \times {\mathbf{\dot {e}}})} \right).$$

Changing in this formula the sign of \(\boldsymbol\varphi \) to the opposite and, respectively, the sign of \({\mathbf{e}}\) in the right-hand side, we obtain a formula for antisymmetric matrix (A2.1):

$$A({{\boldsymbol\omega }_{*}}) = C( - \boldsymbol\varphi )\left( {\frac{d}{{dt}}C(\boldsymbol\varphi )} \right) = A\left( {\dot {\theta }\,{\mathbf{e}} + sin\theta \,{\mathbf{\dot {e}}} - (1 - \cos \theta ){\mathbf{e}} \times {\mathbf{\dot {e}}}} \right),$$

which yields Eq. (4.5) for rotational velocity in moving axes, which was to be proved.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.G. On Kinematic Description of the Motion of a Rigid Body. Mech. Solids 58, 2723–2730 (2023). https://doi.org/10.3103/S0025654423080150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423080150

Keywords:

Navigation