Skip to main content
Log in

An Algebraic Algorithm of Pseudotensors Weights Eliminating and Recovering

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The paper deals with an algebraic algorithm for the pseudotensors weights eliminating and recovering. The proposed algorithm allows us to reduce pseudotensors of arbitrary ranks and weights to absolute tensors of higher ranks. The weight of a pseudotensor is assumed to be an integer (positive or negative). The algorithm is based on the transformation of a pseudotensor of arbitrary rank and integer weight by using tensor product of permutation symbols. The requisite equations from algebra and analysis of pseudotensors are given and discussed. Based on the proposed algebraic algorithm, covariant constancy of permutation symbols and fundamental orienting pseudoscalar powers, a realisation of covariant differentiation of a pseudotensor field of arbitrary rank and integer weight is developed. The definition of the pseudotensor field gradient is then introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. As some authors pointed out [3, p. 159], weights of rational pseudoinvariants can be sometimes fractional.

  2. In micropolar elasticity microrotation vector can be represented by the covariant pseudovector \({{\mathop \phi \limits^{[ - 1]} }_{{s}}}\), absolute vectors \({{\phi }^{s}}\) (or \({{\phi }_{s}}\)), and contravariant pseudovector \({{\mathop \phi \limits^{[ + 1]} }^{{s}}}\). Pseudovector components are known insensitive to the mirror reflections of local coordinate frame.

  3. Note that this realisation can be used not only in Euclidean spaces, but also in Riemannian ones [2].

  4. The equation (15) also makes sense for fractional weights, but with one limitation: in left-handed coordinate systems powers ew must be real.

  5. The Hamilton nabla operator is defined according to: \(\nabla = \mathop {\boldsymbol\imath} \limits^k {\kern 1pt} {{\partial }_{k}}\).

REFERENCES

  1. B. A. Rozenfeld, Multidimensional Spaces (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  2. L. P. Eisenhart, Riemannian Geometry (Princeton Univ. Press, Princeton, 1997).

    MATH  Google Scholar 

  3. G. B. Gurevich, Foundations of the Theory of Algebraic Invariants (Noordhoff, Groningen, 1964).

    MATH  Google Scholar 

  4. J. L. Synge and A. Schild, Tensor Calculus (Dover, New York, 1978).

    MATH  Google Scholar 

  5. J. A. Schouten, Tensor Analysis for Physicist (Clarendon Press, Oxford, 1951).

    Google Scholar 

  6. J. F. Rudge, “A micropolar continuum model of diffusion creep,” Phil. Mag. 101 (17), 1913–1941 (2021). https://doi.org/10.1080/14786435.2021.1946191

    Article  ADS  Google Scholar 

  7. H. Abedi, S. Capozziello, M. Capriolo, and A. M. Abbassi, “Gravitational energy–momentum pseudo-tensor in Palatini and metric f(R) gravity,” Annals Phys. 439, 168796 (2022). https://doi.org/10.1016/j.aop.2022.168796

  8. S. J. Crothers, “The Einstein and Landau-Lifshitz pseudotensors — A mathematical note on existence,” Phys. Essays 33 (3), 268–270 (2020). https://doi.org/10.4006/0836-1398-33.3.268

    Article  ADS  Google Scholar 

  9. Y. Koutsawa, “New micromechanics approaches for the effective properties of multiferroics composites with spring-type imperfect interfaces,” Compos. Struct. 211, 41–55 (2019). https://doi.org/10.1016/j.compstruct.2018.12.025

    Article  Google Scholar 

  10. Yu. N. Radaev and E. V. Murashkin, “Pseudotensor formulation of the mechanics of hemitropic micropolar media,” Probl. Prochn. Plastichn. 82 (4) 399–412 (2020). https://doi.org/10.32326/1814-9146-2020-82-4-399-412

    Article  Google Scholar 

  11. S. A. Balbus, “A Poynting theorem formulation for the gravitational wave stress pseudo tensor,” Int. J. Modern Phys. D 30 (14), 2142003 (2021). https://doi.org/10.1142/S0218271821420037

  12. E. V. Murashkin and Yu. N. Radayev, “On a micropolar theory of growing solids,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 24 (3), 424–444 (2020). https://doi.org/10.14498/vsgtu1792

    Article  Google Scholar 

  13. V. A. Kovalev, E. V. Murashkin, and Yu. N. Radayev, “On the Neuber theory of micropolar elasticity. A pseudotensor formulation,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 24 (4), 752–761 (2020). https://doi.org/10.14498/vsgtu1799

    Article  Google Scholar 

  14. Yu. N. Radayev, E. V. Murashkin, and T. K. Nesterov, “On covariant non-constancy of distortion and inversed distortion tensors,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 26 (1), 36–47 (2022). https://doi.org/10.14498/vsgtu1891

    Article  Google Scholar 

  15. Yu. N. Radayev, E. V. Murashkin, and T. K. Nesterov, “Pseudotensor formalism for neuber’s micropolar elasticity theory,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 4(50), 73–81 (2021). https://doi.org/10.37972/chgpu.2021.50.4.006

  16. E. V. Murashkin and Yu. N. Radayev, “On a pseudotensor generalization of the Hugoniot-Hadamard linking boundary conditions,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 2(48), 104–114 (2021). https://doi.org/10.37972/chgpu.2021.48.2.013

  17. E. V. Murashkin and Yu. N. Radayev, “Pseudovector hyperbolic differential operators of hemitropic micropolar elasticity,” Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., No. 4(50), 59–72 (2021). https://doi.org/10.37972/chgpu.2021.50.4.005

  18. O. Veblen and T. Y. Thomas, “Extensions of relative tensors,” Trans. Am. Math. Soc. 26 (3), 373–377 (1924). https://www.jstor.org/stable/1989146

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Veblen, Invariants of Quadratic Differential Forms (Cambridge Univ. Press, Cambridge, 1927).

    MATH  Google Scholar 

  20. C. Truesdell and R. Toupin, “The classical field theories,” in Principles of Classical Mechanics and Field Theory, Ed. by S. Flügge (Springer, Berlin, Heidelberg, 1960), pp. 226–858. https://doi.org/10.1007/978-3-642-45943-6_2

    Book  MATH  Google Scholar 

  21. A. J. Mc Connell, Application of Tensor Analisys (Dover, New York, 1957).

    Google Scholar 

  22. I. S. Sokolnikoff, Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua (John Wiley & Sons Inc., New York, 1964).

    MATH  Google Scholar 

Download references

Funding

This study was in part financially supported by the Ministry of Science and Higher Education of the Russian Federation (State Registration Number AAAA-A20-120011690132-4) and by the Russian Foundation for Basic Research project no. 20-01-00666.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Murashkin or Yu. N. Radayev.

Additional information

Translated by M. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashkin, E.V., Radayev, Y.N. An Algebraic Algorithm of Pseudotensors Weights Eliminating and Recovering. Mech. Solids 57, 1416–1423 (2022). https://doi.org/10.3103/S0025654422060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422060085

Keywords:

Navigation