Skip to main content
Log in

Indentation behavior of a hard film resting on a soft substrate

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

The hard film/soft substrate systems are widely found in production and life. In order to better understand the indentation response of those systems, a closed-form indentation model is established based on the theory of plates and the assumption of Hertz contact stress distribution. Inspired by the model, a new method of measuring the mechanical properties of nanofilms by indentation on hard film/soft substrate system is proposed. Then, with the help of finite element method (FEM), the effectiveness of the model and the method is systematically verified. The results show that compared with the Xu-Pharr model which established by the perturbation method, our model can better describe the compliance of the hard film/soft substrate system in a lager range of modulus ratio of the film to the substrate. In order to obtain the modulus of the nanofilms more accurately by our method, the optimum indentation depth for testing is 0.5 times the film thickness to 1 times the film thickness, and it is best to use a softer substrate to make the modulus ratio of the film to the substrate greater than 103. In addition, the radius of the AFM tip is preferably more than 1 times the film thickness and less than 4 times the film thickness, and a smooth surface of the sample is most preferred. Compared with free standing indentation test or bulge test, our research provides a more convenient and cheaper method for measuring the nanofilms’ modulus in laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. Lee, X. Wei, J. W. Kysar, et al., “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321 (5887), 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  ADS  Google Scholar 

  2. A. C. Ferrari, J. C. Meyer, V. Scardaci, et al., “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  ADS  Google Scholar 

  3. A. K. Geim, “Graphene: status and prospects,” Science 324 (5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  ADS  Google Scholar 

  4. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nature Materials 10 (8), 569–581 (2011). https://doi.org/10.1038/nmat3064

    Article  ADS  Google Scholar 

  5. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, et al. “Graphene: the new two-dimensional nanomaterial,” Angew. Chem. Int. Ed. 48 (42), 7752–7777 (2009). https://doi.org/10.1002/anie.200901678

    Article  Google Scholar 

  6. D. A. Dikin, S. Stankovich, E. J. Zimney, et al., “Preparation and characterization of graphene oxide paper,” Nature 448 (7152), 457–460 (2007). https://doi.org/10.1038/nature06016

    Article  ADS  Google Scholar 

  7. M. Fang, Z. Zhang, J. Li, et al. “Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces,” J. Mater. Chem. 20 (43), 9635 (2010). https://doi.org/10.1039/C0JM01620A

    Article  Google Scholar 

  8. Z. Chen and H. Lu, “Constructing sacrificial bonds and hidden lengths for ductile graphene/polyurethane elastomers with improved strength and toughness,” J. Mater. Chem. 22, 12479–12490 (2012). https://doi.org/10.1039/C2JM30517H

    Article  ADS  Google Scholar 

  9. C. Hou, H. Wang, Q. Zhang, et al., “Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch,” Adv. Mater. 26 (29), 5018–5024 (2014). https://doi.org/10.1002/adma.201401367

    Article  Google Scholar 

  10. D. H. Ho, Q. Sun, S. Y. Kim, et al., “Stretchable and multimodal all graphene electronic skin,” Adv. Mater. 28 (13), 2601–2608 (2016). https://doi.org/10.1002/adma.201505739

    Article  Google Scholar 

  11. H. Liu, A. T. Neal, Z. Zhu, et al., “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8 (4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z

    Article  Google Scholar 

  12. A. Castellanos-Gomez, M. Poot, G. A. Steele, et al., “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24 (6), 772–775 (2012). https://doi.org/10.1002/adma.201103965

    Article  Google Scholar 

  13. J. Tao, W. Shen, S. Wu, et al., “Mechanical and electrical anisotropy of few-layer black phosphorus,” ACS Nano 9 (11), 11362–11370 (2015). https://doi.org/10.1021/acsnano.5b05151

    Article  Google Scholar 

  14. J. J. Vlassak and W. D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” J. Mater. Res. 7, 3242–3249 (1992). https://doi.org/10.1557/JMR.1992.3242

    Article  ADS  Google Scholar 

  15. P. A. Gruber, J. Böhm, F. Onuseit, et al., “Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques,” Acta Mater. 56 (10), 2318–2335 (2008). https://doi.org/10.1016/j.actamat.2008.01.027

    Article  ADS  Google Scholar 

  16. K. Chen, M. Scales, and S. Kyriakides, “Material hardening of a high ductility aluminum alloy from a bulge test,” Int. J. Mech. Sci. 138139, 476–488 (2018). https://doi.org/10.1016/j.ijmecsci.2018.02.002

  17. Y. Zhang and C. Pan, “Measurements of mechanical properties and number of layers of graphene from nano-indentation,” Diamond Relat. Mater. 24, 1–5 (2012). https://doi.org/10.1016/j.diamond.2012.01.033

    Article  ADS  Google Scholar 

  18. J. Hay and B. Crawford, “Measuring substrate-independent modulus of thin films,” J. Mater. Res. 26, 727–738 (2011). https://doi.org/10.1557/jmr.2011.8

    Article  ADS  Google Scholar 

  19. G. Cao, Y. Liu, and T. Niu, “Indentation response of two-dimensional materials mounted on different substrates,” Int. J. Mech. Sci. 137, 96–104 (2018). https://doi.org/10.1016/j.ijmecsci.2018.01.018

    Article  Google Scholar 

  20. L. Yang, T. Niu, H. Zhang, et al., “Self-assembly of suspended graphene wrinkles with high pre-tension and elastic property,” 2D Materials 4 (4), 041001 (2017). https://doi.org/10.1088/2053-1583/aa833c

  21. Q. Y. Lin, G. Jing, Y. B. Zhou, et al., “Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition,” ACS Nano 7 (2), 1171–1177 (2013). https://doi.org/10.1021/nn3053999

    Article  Google Scholar 

  22. J. U. Lee, D. Yoon, and H. Cheong, “Estimation of Young’s modulus of graphene by Raman spectroscopy,” Nano Lett. 12 (9), 4444–4448 (2012). https://doi.org/10.1021/nl301073q

    Article  ADS  Google Scholar 

  23. T. Niu, G. Cao, and C. Xiong, “Indentation behavior of the stiffest membrane mounted on a very compliant substrate: Graphene on PDMS,” Int. J. Solids Sturct. 132–133, 1–8 (2018). https://doi.org/10.1016/j.ijsolstr.2017.05.038

  24. H. Gao, C. Cheng-Hsin, and L. Jin, “Elastic contact versus indentation modeling of multi-layered materials,” Int. J. Solids Sturct. 29 (20), 2471–2492, (1992).

    Article  Google Scholar 

  25. H. Xu and G. M. Pharr, “An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch,” Scr. Mater. 55 (4), 315–318, (2006).

    Article  Google Scholar 

  26. P. M. Ramsey, H. W. Chandler, and T. F. Page, “Modelling the contact response of coated systems,” Surface Coatings Techn. 49 (1–3), 504–509 (1991). https://doi.org/10.1016/0257-8972(91)90108-9

  27. G. M. Pharr and W. C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” MRS Bull. 17 (7), 28-33 (1992). https://doi.org/10.1557/S0883769400041634

    Article  Google Scholar 

  28. S. K. Vanimisetti and R. Narasimhan, “A numerical analysis of spherical indentation response of thin hard films on soft substrates,” Int. J. Solids Sturct. 43 (20), 6180–6193 (2006). https://doi.org/10.1016/j.ijsolstr.2005.05.032

    Article  MATH  Google Scholar 

  29. A. H. A. Hogg M. A., “XLVIII. Equilibrium of a thin plate, symmetrically loaded, resting on an elastic foundation of infinite depth,” Philos. Mag. 25 (168), 576–582 (1972). https://doi.org/10.1080/14786443808562039

    Article  MATH  Google Scholar 

  30. H. M. Westergaard, “Stresses in concrete pavements computed by theoreticalanalysis,” Public Roads 7 (2), 25–35 (1926).

    Google Scholar 

  31. Z. Tan and J. Guo, “The unified solution of infinite plate on elastic foundation,” Chin. J. Appl. Mech., No. 2, 9 (2016).

  32. S. Aizikovich, L. Krenev, I. Sevostianov, et al., “Evaluation of the elastic properties of a functionally-graded coating from the indentation measurements,” ZAMM 91 (6), 493–515 (2011). https://doi.org/10.1002/zamm.201000179

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. I. Goryacheva, N. Myshkin, E. Torskaya, et al., “Modeling friction of tribological composite coatings,” J. Frict. Wear 33, 407–414 (2012). https://doi.org/10.3103/S1068366612060037

    Article  Google Scholar 

  34. F. Stepanov and E. Torskaya, “Modeling of indentation of hard coatings by an arbitrarily shaped indenter,” J. Frict. Wear 40, 326–331 (2019). https://doi.org/10.3103/S1068366619040147

    Article  Google Scholar 

  35. E. Torskaya and I. Goryacheva, “The effect of interface imperfection and external loading on the axisymmetric contact with a coated solid,” Wear 254 (5–6), 538–545 (2003). https://doi.org/10.1016/S0043-1648(03)00141-8

  36. J. L. Bucaille, E. Felder, and G. Hochstetter, “Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test,” J. Mater. Sci. 37, 3999–4011 (2002). https://doi.org/10.1023/A:1019644630927

    Article  ADS  Google Scholar 

  37. D. Maji and S. Das, “AFM and Nanoindentation investigation of PDMS elastomeric substrate compliancy for various sputtered thin film morphologies,” J. Biomed. Mater. Res. A 106 (3), 725–737 (2017). https://doi.org/10.1002/jbm.a.36283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siyuan Zhang or Yanwei Liu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Zhang, S. & Liu, Y. Indentation behavior of a hard film resting on a soft substrate. Mech. Solids 56, 1140–1151 (2021). https://doi.org/10.3103/S0025654421060248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421060248

Keywords

Navigation