Skip to main content
Log in

GENERALIZATION OF THE ALGEBRAIC HAMILTON–CAYLEY THEORY

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

The paper presents generalizations of the vector and mixed product concepts including indication of their connection with the fundamental orienting pseudoscalar, necessary for constructing the algebraic Hamilton – Cayley theory for space of arbitrary given dimension n in the pseudotensor case. In existing studies dealing with the mechanics of solids, the case of three-dimensional space is usually considered. The proof of the Hamilton–Cayley theorem is carried out in a pseudotensor formulation. The weight of the pseudotensor is assumed to be an integer. The given examples are tensors of the micropolar theory of elasticity, in particular, hemitropic micropolar elasticity. The dynamic equations for the hemitropic micropolar continuum are discussed in terms of pseudotensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, when deriving the Hamilton–Cayley equation, we did not use the concept of the Euclidean metric of the space, which means the validity of equation (3.14) in the case of an arbitrary n-dimensional space

REFERENCES

  1. R. Lakes, “Elastic and viscoelastic behavior of chiral materials,” Int. J. Mech. Sci. 43 (7), 1579–1589 (2001). https://doi.org/10.1016/S0020-7403(00)00100-4

    Article  MATH  Google Scholar 

  2. T. Mackay and A. Lakhtakia, “Negatively refracting chiral metamaterials: a review,” SPIE Rev. 1 (1), 1–29 (2010). https://doi.org/10.1117/6.0000003

    Article  Google Scholar 

  3. S. Tomar and A. Khurana, “Wave propagation in thermo-chiral elastic medium,” Appl. Math. Model. 37 (22), 9409–9418 (2013). https://doi.org/10.1016/j.apm.2013.04.029

    Article  MathSciNet  MATH  Google Scholar 

  4. G. B. Gurevich, Foundations of the Theory of Algebraic Invariants (Noordhoff, Groningen, 1964).

    MATH  Google Scholar 

  5. J. A. Schouten, Tensor Analysis for Physicist (Clarendon Press, Oxford, 1951).

    Google Scholar 

  6. I. S. Sokolnikoff, Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua (John Wiley & Sons Inc., New York, 1964).

    MATH  Google Scholar 

  7. J. Synge and A. Schild, Tensor Calculus (Uni. of Toronto Press, Toronto, 1949).

    Book  Google Scholar 

  8. C. Truesdell and R. Toupin, “The classical field theories,” in Principles of Classical Mechanics and Field Theory, Ed. by S. Flügge (Springer Berlin Heidelberg, Berlin, Heidelberg, 1960), 226–858. https://doi.org/10.1007/978-3-642-45943-6_2

  9. N. E. Kochin, Vector Calculus and Foundations of Tensor Calculus (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  10. Yu. N. Radaev and E. V. Murashkin, “Pseudotensor formulation of the mechanics of hemitropic micropolar media,” Probl. Prochn. Plastichn. 82 (4) 399–412 (2020). https://doi.org/10.32326/1814-9146-2020-82-4-399-412

    Article  Google Scholar 

  11. E. V. Murashkin and Yu. N. Radayev, “On a micropolar theory of growing solids,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 24 (3), 424-444 (2020). https://doi.org/10.14498/vsgtu1792

    Article  Google Scholar 

  12. V. A. Kovalev, E. V. Murashkin, and Yu.N. Radayev, “On the Neuber theory of micropolarelasticity. A pseudotensor formulation,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 24 (4), 752–761 (2020). https://doi.org/10.14498/vsgtu1799

    Article  Google Scholar 

  13. O. Veblen and T. Thomas, “Extensions of relative tensors,” Trans. Am. Math. Soc. 26, 373–377 (1924). URL: https://www.jstor.org/stable/1989146.

    Article  MathSciNet  Google Scholar 

  14. O. Veblen, Invariants of Quadratic Differential Forms (Cambridge University Press, Cambridgeб 1927).

  15. B. A. Rozenfeld, Multidimensional Spaces (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  16. Yu. N. Radaev, “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 22 (3), 504–517 (2018). https://doi.org/10.14498/vsgtu1635

    Article  Google Scholar 

Download references

Funding

The study was carried out within the framework of a state assignment (state registration no. АААА-А20-120011690132-4) and with the support of the Russian Foundation for Basic Research projects no. 19-51-60001, no. 20-01-00666.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Murashkin or Yu. N. Radayev.

Additional information

Translated by A.A. Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashkin, E.V., Radayev, Y.N. GENERALIZATION OF THE ALGEBRAIC HAMILTON–CAYLEY THEORY. Mech. Solids 56, 996–1003 (2021). https://doi.org/10.3103/S0025654421060145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421060145

Keywords:

Navigation