Skip to main content
Log in

Construction of Models for Elastic Media with the Restricted Normal Components of the Stress Vector

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

It is shown that the medium exhibiting the property of boundedness for normal stresses is hyperelastic, and the constitutive equation of the medium model is a nonlinear relation between the Piola–Kirchhoff and Green–Saint–Venant tensors. For an isotropic medium, it is shown that the stress and strain tensors are coaxial, and a representation of the relation between the stress and strain tensors in the form of elementary functions of a tensor argument is obtained. A geometric proof of the uniqueness of the obtained representation is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masonry and Reinforced Masonry Structures. SNIP Handbook II-22-81 (Minregion Rossii, Moscow, 2011) [in Russian].

  2. S. Huerta, “Mechanics of Masonry Vaults: The Equilibrium Approach,” in Historical Constructions Ed. By P. B. Lourenço, P. Roca (Guimarães, 2001).

    Google Scholar 

  3. H. Hencky, “Zur Theorie Plastischer Deformationen und der Hierdurch im Material Hervorgerufenen Nachspannungen,” ZAMM, 4, 323–335 (1924).

    Article  ADS  MATH  Google Scholar 

  4. G. Del Piero, “Constitutive Equation and Compatibility of the External Loads for Linear Elastic Masonry-Like Materials,” Meccan. 24, 150–162 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces (Springer, 2010).

    MATH  Google Scholar 

  6. P. Lancaster, The Theory of Matrices (Academic Press, 1969; Nauka, Moscow, 1973).

    Google Scholar 

  7. G. Romano and E. Sacco, “Materiali non Resistenti a Trazione. Equazioni Costitutive eMetodi di Calcolo,” in Atti Istituto di Scienza Delle Costruzioni, Facolta di Ingegneria di Napoli, No. 350. (Napoli, 1984).

    Google Scholar 

  8. T. Panzeca and C. Polizzotto “Constitutive Equations for No-TensionMaterials,” Meccan. 23, 88–93 (1988).

    Article  MATH  Google Scholar 

  9. M. Lucchesi, C. Padovani, G. Pasquinelli, and N. Zani, “Masonry Constructions: Mechanical Models and Numerical Applications,” in Lecture Notes in Applied and Computational Mechanics, Vol. 39 (Springer–Verlag, Berlin–Heidelberg, 2008).

  10. R. W. Cottle, P. Jong–Shi, and R.E. Stone, The Linear Complementarity Problem (Academic Press, Boston, 2009).

    Book  MATH  Google Scholar 

  11. Ph. G. Ciarlet, Mathematical Elasticity, Vol. I Three–Dimensional Elasticity (North-Holland et Cetera, 1988; Mir, Moscow, 1992).

  12. R. D. Coleman and W. Noll, “Material Symmetry and Thermostatic Inequality in Finite Elastic Deformations,” Arch. Rat. Mech. Analys. 15 (2), 87–111 (1964).

    Article  MATH  Google Scholar 

  13. W. Noll, “A Mathematical Theory of Mechanical Behavior of Continuous Media,” Arch. Rat. Mech. Anal. 2 (1), 197–226 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North Holland; Amsterdam: Oxford: Elsevier. 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  15. R. B. Holmes, A Course on Optimization and Best Approximation (Springer–Verlag, Berlin–Heidelberg–New York, 1972).

    Book  MATH  Google Scholar 

  16. A. I. Glushko and I. I. Neshcheretov, “Mathematical Models of Damaged Elastic Media that Deform Differently under Tension and Compression,” Quart. J. Mech. App. Math. 65 (3), 373–387 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Baiocchi and A. Capelo, Varitional and Quasi-Varitional Inequalities. Applications to Free Boundary Problems (Wiley, 1984; Nauka, Moscow, 1988).

    MATH  Google Scholar 

  18. V. V. Lokhin and L. I. Sedov, “Nonlinear Tensor Functions of Several Tensor Arguments,” in Continuum Mechanics Ed. by L. I. Sedov (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  19. M. E. Gurtin, An Introduction to Continuum Mechanics (Academic Press, New York–London–Toronto–Sydney–San Francisco, 1981).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Glushko or I. I. Neshcheretov.

Additional information

Original Russian Text © A.I. Glushko, I.I. Neshcheretov, 2018, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2018, No. 6, pp. 129–144.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushko, A.I., Neshcheretov, I.I. Construction of Models for Elastic Media with the Restricted Normal Components of the Stress Vector. Mech. Solids 53, 707–720 (2018). https://doi.org/10.3103/S0025654418060122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654418060122

Keywords

Navigation