Skip to main content
Log in

Admissible Steady-State Regimes of Crack Propagation in a Square-Cell Lattice

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In this paper, the authors return to the classical problem of crack propagation in a lattice. The authors study the problems concerned with the possible regimes of stable steady-state crack propagation in an anisotropic lattice. They show that the steady-state crack propagation is impossible for some relations between the strength and elastic properties of the lattice. The authors also discuss the possibility of stable crack propagation at low speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philos. Trans. Roy. Soc. Ser. A 221, 163–198 (1921).

    Article  Google Scholar 

  2. J. D. Eshelby, “The Force on an Elastic Singularity,” Philos. Trans. Roy. Soc. 244, 87–112 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. V. V. Novozhilov, “On a Necessary and Sufficient Criterion for Brittle Strength,” Prikl. Mat. Mekh. 33 (2), 212–222 (1969) [J. Appl.Math. Mech. (Engl. Transl.) 33 (2), 201–210 (1969)].

    Google Scholar 

  4. V. V. Novozhilov, “On the Foundations of a Theory of Equilibrium Cracks in Elastic Solids,” Prikl. Mat. Mekh. 33 (5), 797–812 (1969) [J. Appl.Math. Mech. (Engl. Transl.) 33 (5), 777–790 (1969)].

    MATH  Google Scholar 

  5. R. Thompson, C. Hsieh, and V. Rana, “Lattice Trapping of Fracture Cracks,” J. Appl. Phys. 42 (8), 3154–3160 (1971).

    Google Scholar 

  6. L. I. Slepyan, “Crack Propagation in High-frequency Lattice Vibration,” Dokl. Akad. Nauk SSSR 260 (3), 566–569 (1981) [Sov. Phys. Dokl. (Engl. Transl.) 26, 900–902 (1981)].

    MathSciNet  MATH  Google Scholar 

  7. L. I. Slepyan, “On Discrete Models in Fracture Mechanics,” Izv. Ross. Akad.Nauk.Mekh. Tverd. Tela, No. 6, 46–59 (2010) [Mech. Solids (Engl. Transl.) 45 (6), 803-814 (2010)].

    Google Scholar 

  8. L. I. Slepyan and L. V. Troyankina, “Fracture Wave in a Chain Structure,” Zh. Prikl. Mekh. Tekhn. Fiz., No. 6, 128–134 (1984) [J. Appl.Mech. Phys. (Engl. Transl.) 25 (16), 921–927 (1984)].

    Google Scholar 

  9. S. A. Kulakhmetova, V. A. Saraikin, and L. I. Slepyan, “Plane Problem of a Crack in a Lattice,” Mech. Solids 19, 102–108 (1984).

    MathSciNet  Google Scholar 

  10. A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks Faster then the Shear Wave Speed,” Science 284 (5418), 1337–1340 (1999).

    Article  ADS  Google Scholar 

  11. H. Gao, Y. Huang, and F. F. Abraham, “Continuum and Atomic Studies of Intersonic Crack Propagation,” J.Mech. Phys. Solids 49, 2113–2132 (2001).

    Article  ADS  MATH  Google Scholar 

  12. G. S. Mishuris, A. V. Movchan, and L. I. Slepyan, “Dynamics of a Bridged Crack in a Discrete Lattice,” Quart. J.Mech. Appl. Math. 61 (2), 151–160 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Gorbushin and G. Mishuris, “Analysis of Dynamic Failure of the Discrete Chain Structure with Nonlocal Interactions,” Math. Mech. Appl. Sci., No. 23 (2016).

  14. G. S. Mishuris, A. V. Movchan, and L. I. Slepyan, “Localized Knife Waves in a Structured Interface,” J. Mech. Phys. Solids 57, 1958–1979 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. L. I. Slepyan, Models and Phenomena in Fracture Mechanics (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  16. L. Slepyan, A. Cherkaev, and E. Cherkaev, “TransitionWaves in Bistable Structures. II. Analytical Solution: Wave Speed and Energy Dissipation,” J. Mech. Phys. Solids 53 (2), 407–436 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. L. Truskinowsky and A. Vainchtein, “Kinetics of Martensite Phase Transitions: Lattice Model,” SIAM J. Appl.Math. 66 (2), 533–553 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Fineberg and M. Marder, “Instability in Dynamics Fracture,” Phys. Rep. 313 (1), 1–108 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Pechnik, H. Levinem, and D. A. Kessler, “Steady-State Mode I Cracks in a Viscoelastic Triangular Lattice,” J. Mech. Phys. Solids 50 (3), 583–613 (2002).

    Article  ADS  Google Scholar 

  20. K. Ravi-Chandar, “Dynamic Fracture of Nominally BrittleMaterials,” Int. J. Fract. 90 (1), 83–102 (1998).

    Article  Google Scholar 

  21. J. R. Wills and A. V. Movchan, “Dynamic Weight Functions for a Moving Crack. I. Mode I Loading,” J. Mech. Phys. Solids 43, 319–341 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. V. Movchan and J. R. Wills, “Dynamic Weight Functions for a Moving Crack. II. Shear Loading,” J. Mech. Phys. Solids 43 (9), 1369–1383 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Picclroaz, G. Mishuris, and A. V. Movchan, “Perturbation of Mode III Interfacial Cracks,” Int. J. Fract. 166, 41–51 (2010).

    Article  MATH  Google Scholar 

  24. X. P. Xu and A. Needleman, “Numerical Simulations of Fast CrackGrowth in Brittle Solids,” J.Mech. Phys. Solids 42 (9), 1397–1434 (1994).

    Article  ADS  MATH  Google Scholar 

  25. M. Marder, “Simple Models of Rapid Fracture,” Physica D 66, 125–134 (1993).

    Article  ADS  MATH  Google Scholar 

  26. L. I. Slepyan, A. B. Movchan, and G. S. Mishuris, “Crack in a LatticeWaveguide,” Int. J. Fract. 162 (1–2), 91–106 (2010).

    Article  MATH  Google Scholar 

  27. L. I. Slepyan, M. V. Ayzenberg–Stepanenko, and G. Mishuris, “ForerunningMode Transition in a ContinuousWaveguide,” J.Mech. Phys. Solids 78, 32–45 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. K. Ravi-Chandar, and W. G. Knauss, “An Experimental Investigation intoDynamic Fracture: III.On Steady-State Crack Propagation and Crack Branching,” Int. J. Fract. 26, 141–154 (1984).

    Article  Google Scholar 

  29. M. Marder and S. Grass, “Origin of Crack Tip Instabilities,” J.Mech. Phys. Solids 43 (1), 1–48 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. N. Gorbushin and G. Mishuris, “Dynamic Fracture of a Discrete Media under Moving Load,” 2017.arXiv preprint arXiv:1701.02725.

    MATH  Google Scholar 

  31. M. V. Ayzenberg–Stepanenko, G. Mishuris, and L. I. Slepyan, “Brittle Fracture in a Periodic Structure with Internal Potential Energy. Spontaneous Crack Propagation,” Proc. Roy. Soc. London. Ser. A 470 (2167), 20140121 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. N. F. Morozov and M. V. Paukshto, Discrete and Hybrid Models of Fracture Mechanics (SPbGU, St. Petersburg, 1995) [in Russian].

    Google Scholar 

  33. N. F. Morozov and M. V. Paukshto, “On the Crack Simulation and Solution in the Lattice,” ASME J. Appl. Mech. 58, 290–292 (1991).

    Article  ADS  MATH  Google Scholar 

  34. N. Gorbushin and G. Mishuris, “On Admissible Steady-State Regimes of Crack Propagation in a Square-Cell Lattice,” 2017.arXiv preprint arXiv:1701.04818.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Mishuris.

Additional information

Original Russian Text © N.A. Gorbushin, G.S. Mishuris, 2017, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2017, No. 5, pp. 83–92.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbushin, N.A., Mishuris, G.S. Admissible Steady-State Regimes of Crack Propagation in a Square-Cell Lattice. Mech. Solids 52, 541–548 (2017). https://doi.org/10.3103/S0025654417050090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654417050090

Keywords

Navigation