Skip to main content

A Phase Field Approach to Mathematical Modeling of Crack Propagation

  • Chapter
  • First Online:
A Mathematical Approach to Research Problems of Science and Technology

Part of the book series: Mathematics for Industry ((MFI,volume 5))

Abstract

We consider a phase field model for crack propagation in an elastic body. The model is derived as an irreversible gradient flow of the Francfort-Marigo energy with the Ambrosio-Tortorelli regularization and is consistent to the classical Griffith theory. Some numerical examples computed by adaptive mesh finite element method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Akagi, M. Kimura, Well-posedness and long time behavior for an irreversible diffusion equation (in preparation)

    Google Scholar 

  2. L. Ambrosio, V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. 6-B(7), 105–123 (1992)

    Google Scholar 

  3. T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bourdin, The variational formulation of brittle fracture: numerical implementation and extensions, in IUTAM Symposium on discretization methods for evolving discontinuities, ed. by T. Belytschko, A. Combescure, R. de Borst. (Springer, 2007), pp. 381–393

    Google Scholar 

  5. B. Bourdin, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9, 411–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Bourdin, G.A. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bourdin, G.A. Francfort, J.-J. Marigo, The Variational Approach to Fracture. (Springer, 2008)

    Google Scholar 

  8. M. Buliga, Energy minimizing brittle crack propagation. J. Elast. 52, 201–238 (1998/99)

    Google Scholar 

  9. P.A. Cundall, A computer model for simulating progressive large scale movements in blocky rock systems, in Proceedings of the Symposium of the International Society for Rock Mechanics, Nancy, vol. 2, pp. 129–136 (1971)

    Google Scholar 

  10. G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.A. Griffith, The phenomenon of rupture and flow in solids. Phil. Trans. Royal Soc. London A221, 163–198 (1921)

    Article  Google Scholar 

  12. F. Hecht, New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Hori, K. Oguni, H. Sakaguchi, Proposal of FEM implemented with particle discretization for analysis of failure phenomena. J. Mech. Phys. Solids 53, 681–703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Ichimura, M. Hori, M.L.L. Wijerathne, Linear finite elements with orthogonal discontinuous basis functions for explicit earthquake ground motion modeling. Int. J. Numer. Methods Eng. 86, 286–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Karma, H. Levine, D. Kessler, Phase-field model of mode-III dynamic fracture. Phys. Rev. Lett. 87, 045501 (2001)

    Article  Google Scholar 

  16. T. Kawai, New discrete models and their application to seismic response analysis. Nucl. Eng. Des. 48, 207–229 (1978)

    Article  Google Scholar 

  17. M. Kimura, H. Komura, M. Mimura, H. Miyoshi, T. Takaishi, D. Ueyama, Adaptive mesh finite element method for pattern dynamics in reaction-diffusion systems, in Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2005, COE Lecture Note, vol. 3, Faculty of Mathematics, Kyushu University ISSN 1881–4042 (2006), pp. 56–68

    Google Scholar 

  18. M. Kimura, H. Komura, M. Mimura, H. Miyoshi, T. Takaishi, D. Ueyama, Quantitative study of adaptive mesh FEM with localization index of pattern. in Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2006, COE Lecture Note, vol. 6, Faculty of Mathematics, Kyushu University ISSN 1881–4042 (2007), pp. 114–136

    Google Scholar 

  19. M. Kimura, T. Takaishi, Phase field models for crack propagation. Theor. Appl. Mech. Jpn. 59, 85–90 (2011)

    Google Scholar 

  20. R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth. Phys. D 63, 410–423 (1993)

    Article  MATH  Google Scholar 

  21. N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  22. A. Munjiza, The Combined Finite-Discrete Element Method. (Wiley, New York, 2004)

    Google Scholar 

  23. A. Schmidt, K.G. Siebert, Design of adaptive finite element software. the finite element toolbox ALBERTA, in Lecture Notes in Computational Science and Engineering, vol. 42, (Springer-Verlag, Berlin, 2005)

    Google Scholar 

  24. T. Takaishi, Numerical simulations of a phase field model for mode III crack growth. Trans. Jpn. Soc. Ind. Appl. Math. 19, 351–369 (2009) (in Japanese)

    Google Scholar 

  25. T. Takaishi, M. Kimura, Phase field model for mode III crack growth. Kybernetika 45, 605–614 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant Number 00268666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kimura, M., Takaishi, T. (2014). A Phase Field Approach to Mathematical Modeling of Crack Propagation. In: Nishii, R., et al. A Mathematical Approach to Research Problems of Science and Technology. Mathematics for Industry, vol 5. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55060-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55060-0_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55059-4

  • Online ISBN: 978-4-431-55060-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics