Skip to main content
Log in

Using intensive plastic deformations for manufacturing bulk nanostructure metallic materials

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The results of studies concerned with new trabds in the development of intensive plastic deformation methods for manufacturing nanostructure metals and alloys are presented. Much attention is paid to the mechanical properties of bulk nanomaterials. Keywords: intensive plastic deformation, nanostructure material, gain boundary, mechanical property, microstructure, segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Thomsen, C. Yang, and S. Kobayashi, Mechanics of Plastic Deformations in Metal Processing (Macmillan, New York, 1965; Mashinostroenie, Moscow, 1969).

    Google Scholar 

  2. A. A. Il’yushin, Continuum Mechanics (Izd-vo MGU, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  3. V. B. Rybin, Large Plastic Deformations and Metal Fracture (Mashinostroenie, Moscow, 1986) [in Russian].

    Google Scholar 

  4. I. Saunders and J. Nutting, “Deformation of Metals to High Strains Using Combinations of Torsion and Compression,” Metals. Sci. 18(12), 571–576 (1984).

    Article  Google Scholar 

  5. S. Erbel, “Mechanical Properties and Structure of Extremely Strain-Hardened Copper,” Metals. Tech. 6(12), 482–486 (1979).

    Google Scholar 

  6. J. F. Bell, The Experimental Foundations of Solid Mechanics, Parts 1 and 2 (Springer, New York, 1973; Nauka, Moscow, 1984).

    Google Scholar 

  7. P. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill, New York, 1952; Izd-vo Inostr. Lit., Moscow, 1955).

    MATH  Google Scholar 

  8. H. L. Pugh (Editor),Mechanical Properties of Material under High Pressure, Vols. 1 and 2 (Mir, Moscow, 1973), [in Russian].

    Google Scholar 

  9. N. A. Smirnova, B. I. Levit, V. I. Pilyugin, et al., “Evolution of Structure of FCC Single Crystals during Strong Plastic Deformation,” Fiz. Metal. Metalloved. 61(6), 1170–1177 (1986) [Phys. Met. Metallography (Engl. Transl.) 61 (6), 127–134 (1986)].

    Google Scholar 

  10. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. P. Kopylov, “Plastic Working of Metals by Simple Shear,” Izv. Akad. Nauk SSSR. Metally, No. 1, 115–123 (1981) [Russ. Metallurgy (Metally) (Engl. Transl.) No. 1, 99–105 (1981)].

  11. R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, “Plastic Deformations of Alloys with Submicro-Grained Structure,” Mater. Sci. Engng. A 137(1), 35–40 (1991).

    Article  Google Scholar 

  12. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, “Structure and Properties of Metallic Materials with Submicrocrystal Structure,” Fiz. Metal. Metalloved. 73(4), 70–86 (1992) [Phys. Met. Metallography (Engl. Transl.) 73 (4), 373–383 (1992)].

    Google Scholar 

  13. R. Z. Valiev and I. V. Alexandrov, Bulk Nanostructured Metallic Materials: Production, Structure, and Properties (IKTs Akadem. Kniga, Moscow, 2007) [in Russian].

    Google Scholar 

  14. M. J. Zehetbauer and Y. T. Zhu (Editors), Bulk Nanostructured Materials (Wiley-VCH Verlag, Weinheim, 2009).

    Google Scholar 

  15. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk Nanostructured Materials from Severe Plastic Deformations,” Prog. Mater. Sci. 45(2), 103–189 (2000).

    Article  Google Scholar 

  16. R. Z. Valiev and I. V. Alexandrov, Nanostructured Materials Produced by Intensive Plastic Defornmation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  17. Ultrafine Grained Materials II, Ed. by Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lowe (TMS (The Minerals, Metal, and Materials Society), Warrendale, Pennsilvania, 2002).

    Google Scholar 

  18. M. Zehetbauer (Editor), Adv. Engng Mater., 5 (Special Issue on Nanomaterials by Severe Plastic Deformation (SPD)) (2003).

  19. A. P. Zhilyaev and T. G. Langdon, “Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications,” Prog. Mater. Sci. 53, 893–979 (2008).

    Article  Google Scholar 

  20. R. Z. Valiev, “Production of Nanostructured Metals and Alloys with Unique Properties Using Intensive Plastic Deformations,” Ross. Nanotekhnol. 1(1–2), 208–216 (2006) [Nanotechnol. Russ. (Engl. Transl.)].

    Google Scholar 

  21. T. G. Langdon, M. Furukawa, M. Nemoto, and Z. Horita, “Using Equal-Channel Angular Pressing for Refining Grain Size,” JOM 52(4), 30–33 (2000).

    Article  Google Scholar 

  22. G. I. Raab, “Development of Intensive Plastic Deformation Methods for Producing Ultrafine Grained Materials,” Vestnik UGATU, No. 3(11), 67–75 (2004).

  23. I. P. Semenova, V. V. Latysh, G. Kh. Sadikova, and R. Z. Valiev, “Structure and Mechanical Properties of Titanium Elongated Workpieces Produced from Intensive Plastic Deformations,” Fiz. Tekhn. Vys. Davl. 15(1), 81–85 (2005).

    Google Scholar 

  24. F. Z. Utyashev and G. I. Raab, “Influence of the Scale Factor on Grain Refinement in Metals under Intensive Plastic Deformations,” Kuznechno-Shtampovochnoe Proizvodstvo, No. 11, 13–20 (2008).

  25. V. S. Zhernakov, I. N. Budilov, G. I. Raab, et al., “A Numerical Modeling and Investigations of Flow Stress and Grain Refinement during Equal-Channel Angular Pressing,” Scripta Mater. 44(8–9), 1765–1769 (2001).

    Google Scholar 

  26. F. Z. Utyashev and G. I. Raab, “The Area of the Surfaces of Fragments, Grains, and the Sample upon Large Cold Deformations of Metals and the Effect of These Surfaces and the Surface of the Deformation Zone on Structure Refinement,” Fiz. Metal. Metalloved. 101(3), 311–322 (2006) [Phys. Met. Metallography (Engl. Transl.) 101 (3), 285–295 (2006)].

    Google Scholar 

  27. V. V. Stolyarov, Y. T. Zhy, I. V. Alexandrov, et al., “Influence of ECAP Routes on the Microstructure and Properties of Pure Ti,” Mater. Sci. Engng. A 299(1–2), 59–67 (2001).

    Article  Google Scholar 

  28. G. Kh. Sadikova, V. V. Latysh, I. P. Semenova, and R. Z. Valiev “Effect of Severe Plastic Deformation and Thermomechanical Treatment on the Structure and Properties of Titanium,” Metaloved. Term. Obrab. Metallov, No. 11(605), 31–34 (2005) [Metal Sci. Heat Treatment (Engl. Transl.) 47 (11–12), 512–515 (2005)].

  29. G. I. Raab, “Plastic Flow at Equal Channel Angular Processing in Parallel Channels,” Mater. Sci. Engng. A 410–411, 230–233 (2005).

    Article  Google Scholar 

  30. G. I. Raab, G. V. Kulyasov, V. A. Polozovskii, and R. Z. Valiev, “Device for Metal Deformation Processing,” RF Patent No. 2 188 091 (June 09, 2000; Published on April 20, 2002), Bulletin No. 36.

  31. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, “Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing,” Scripta Mater. 47(12), 893–899 (2002).

    Article  Google Scholar 

  32. A. P. Zhilyaev, B.-K. Kim, G. V. Nurislamova, et al., “Orientation Imaging Microscopy of Ultrafine-Grained Nickel,” Scripta Mater. 46(8), 575–580 (2002).

    Article  Google Scholar 

  33. I. V. Alexandrov, A. R. Kil’mametov, and R. Z. Valiev, “X-Ray DiffractionStudies of Ultrafine-Grained Metals Produced by Equal-Channel Angular Pressing,” Metally, No. 1, 63–71 (2004) [Russ. Metallurgy (Metally) (Engl. Transl.) No. 1, 52–59 (2004)].

  34. R. Z. Valiev, A. V. Sergueva, and A. K. Mukherjee, “The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium,” Scripta Mater. 49(7), 669–674 (2003).

    Article  Google Scholar 

  35. G. V. Nurislamova, X. Sauvage, R. Isiamgaliev, and R. Z. Valiev, “Nanostructure and Related Mechanical Properties of an Al-Mg-Si Alloy Processing by Severe Plastic Deformation,” Phil. Mag. Lett. 88(6), 459–466 (2008).

    Article  ADS  Google Scholar 

  36. G. Sha, Y. B. Wang, X. Z. Liao, et al., “Influence of Equal-Channel Angular Pressing on Precipitation in an Al-Zn-Mg-Cu Alloy,” Acta Mater. 57(10), 3123–3132 (2009).

    Article  Google Scholar 

  37. P. V. Liddicoat, X. Z. Liao, Y. Zhao, et al., “Nanostructural Hierarchy Increases the Strength of Aluminium Alloys,” Nature Communicat. 1(6), 63–69 (2010).

    ADS  Google Scholar 

  38. R. Z. Valiev, N. A. Enikeev, M. Yu. Murashkin, et al., “Superstrength of Ultrafine-Grained Aluminum Alloys Produced by Severe Plastic Deformation,” Dokl. Ross. Akad. Nauk 432(6), 757–760 (2010) [Dokl. Phys. (Engl. Transl.) 55 (6), 267–270 (2010)].

    Google Scholar 

  39. R. Z. Valiev, M. Yu. Murashkin, E. V. Bobruk, and G. I. Raab, “Grain Refinement and Mechanical Behavior of the Al Alloy Subjected to the new SPD Technique,” Mater. Trans. 50(1), 87–91 (2009).

    Article  Google Scholar 

  40. C. S. Pande and K. P. Cooper, “Nanomechanics of Hall-Petch Relationship in Nanocrystalline Materials,” Prog. Mat. Sci. 54(6), 689–706 (2009).

    Article  Google Scholar 

  41. M. Yu. Gutkin, I. A. Ovid’ko, and C. S. Pande, “Yield Stress of Nanocrystalline Materials: Role of Grain Boundary Dislocations, Triple Junctions, and Coble Creep,” Philos. Mag. 84(9), 847–863 (2004).

    Article  ADS  Google Scholar 

  42. E. O. Hall, “The Deformation and Ageing of Mild Steel: III Discussion of Results,” Proc. Phys. Soc. London. B 64(9), 747–753 (2009).

    Article  ADS  Google Scholar 

  43. N. J. Petch, “The Cleavage Strength of Polycrystals,” J. Iron Steel Inst. 174(1), 25–28 (1953).

    Google Scholar 

  44. N. Krasilnikov, Z. Pakiela, W. Lojkowski, and R. Z. Valiev, “Excellent Mechanical Properties of Nickel Processed by High Pressure Technique,” Solid State Phenomena 101–102, 49–54 (2005).

    Article  Google Scholar 

  45. J. Lian, C. Gu, Q. Jiang, and Z. Jiang, “Strain Rate Sensitivity of Face-Centered-Cubic Nanocrystalline Materials Based on Dislocation Deformation,” J. Appl. Phys., No. 99, p. 076103 (2006).

    Google Scholar 

  46. R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe, “Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation,” J. Mater. Res. 17(1), 5–8 (2002).

    Article  ADS  Google Scholar 

  47. R. Z. Valiev and I. B. Alexandrov, “A Paradox of Severe Plastic Deformation in Metals,” Dokl. Ross. Akad. Nauk 380(1), 34–37 (2001) [Dokl. Phys. (Engl. Transl.) 46 (9), 633–635 (2001)].

    Google Scholar 

  48. E.W. Hart, “Theory of the Tensile Test,” Acta Metall. 15(2), 351–355 (1967).

    Article  Google Scholar 

  49. G. E. Deiter, Mechanical Metallurgy (McGraw-Hill, New York, 1986).

    Google Scholar 

  50. Z. Budkovic, H. Van Swygenhoven, P. M. Deriet, et al., “Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel,” Science 304(5668), 273–276 (2004).

    Article  ADS  Google Scholar 

  51. H. W. Höppel, M. Kautz, C. Xu, et al., “An Overview: Fatigue Behavior of Ultrafine-Grained Metals and Alloys,” Int. J. Fatigue 28(9), 1001–1010 (2006).

    Article  Google Scholar 

  52. R. Z. Valiev, M. Zehetbauer, Yu. Estrin, et al., “The Innovation Potential of Bulk Nanostrutured Materials,” Adv. Engng Mater. 9(7), 527–533 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Valiev.

Additional information

Original Russian Text © R.Z. Valiev, N.A. Enikeev, M.Yu. Murashkin, F.Z. Utyashev, 2012, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2012, No. 4, pp. 106–119.

About this article

Cite this article

Valiev, R.Z., Enikeev, N.A., Murashkin, M.Y. et al. Using intensive plastic deformations for manufacturing bulk nanostructure metallic materials. Mech. Solids 47, 463–474 (2012). https://doi.org/10.3103/S0025654412040115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654412040115

Keywords

Navigation