Skip to main content
Log in

Effect of structural transformation and deformation nonlinearity on the stability of a shape memory alloy rod

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Within the framework of a model of nonlinear deformations of shape memory alloys (SMA) under phase and structural transformations and for different statements of the problem, an analytical solution of the problem of stability of an SMA rod undergoing a direct martensitic phase transformation under the action of a compressive load is obtained. It is shown that taking account of the nonlinearity of the deformation process and structural transformation in the transition into the adjacent form of equilibrium significantly changes the solution for sufficiently flexible rods. At the same time, taking into account the strains developed in a phase transition is topical for thick-walled SMA elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Movchan and I. A. Movchan, “One-Dimensional Micromechanical Model of Nonlinear Deformation of Shape Memory Alloys under Direct and Inverse Thermoelastic Transformations,” Mekh. Komp. Mater. Konstr. 13(3), 297–322 (2007) [J. Comp. Mech. Design (Engl. Transl.)].

    MathSciNet  Google Scholar 

  2. A. A. Movchan and I. A. Movchan, “Model of Nonlinear Deformation of Shape Memory Alloys in Active Processes of Direct and Structure Transformations,” Mekh. Komp. Mater. Konstr. 14(1), 75–87 (2008) [J. Comp. Mech. Design (Engl. Transl.)].

    Google Scholar 

  3. A. A. Movchan, I. A. Movchan, and L. G. Sil’chenko, “Micromechanical Model of Nonlinear Deformation of Shape Memory Alloys under Phase and Structure Transitions,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 118–130 (2010) [Mech. Solids (Engl. Transl.) 45 (3), 406–416 (2010)].

  4. A. A. Movchan and S. A. Kazarina, “Experimental Investigation of the Effect of Buckling Caused by Thermoelastic Phase Transformations under the Action of Compressive Stresses,” Probl. Mashinostr. Nadezhn. Mashin, No. 6, 82–89 (2002).

  5. A. A. Movchan and L. G. Sil’chenko, “Buckling of a Rod Undergoing Direct or Reverse Martensite Transformation under Compressive Stresses,” Zh. Prikl. Mekh. Tekhn. Fiz. 44(3), 169–178 (2003) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 44 (3), 442–449 (2003)].

    MATH  Google Scholar 

  6. A. A. Movchan and L. G. Sil’chenko, “Analysis of Buckling Induced by the Direct Thermoelastic Transformation under the Action of Compression Stresses,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 132–144 (2004) [Mech. Solids (Engl. Transl.) 39 (2), 104–114 (2004)].

  7. A. A. Movchan and L. G. Sil’chenko, “The Stability of a Plate of Shape-Memory Alloy in a Direct Thermoelastic Phase Transition,” Prikl. Mat. Mekh. 68(1), 60–72 (2004) [J. Appl. Math. Mech. (Engl. Transl.) 68 (1), 53–64 (2004)].

    MATH  Google Scholar 

  8. A. A. Movchan and L. G. Sil’chenko, “Analytical Solution of the Coupled Buckling Problem for a Plate From a Shape Memory Alloy Subjected to Inverse Martensite Transformation,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 164–178 (2004) [Mech. Solids (Engl. Transl.) 39 (5), 134–145 (2004)].

  9. A. A. Movchan and L. G. Sil’chenko, “The Stability of a Circular Plate of Shape Memory Alloy during a Direct Martensite Transformation,” Prikl. Mat. Mekh. 70(5), 871–883 (2006) [J. Appl. Math. Mech. (Engl. Tranl.) 70 (5), 785–795 (2006)].

    MathSciNet  MATH  Google Scholar 

  10. A. A. Movchan and L. G. Sil’chenko, “Buckling of a Circular Plate Made of a Shape Memory Alloy due to a Reverse Thermoelastic Martensite Transformation,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 117–130 (2008) [Mech. Solids (Engl. Transl.) 43 (1), 100–111 (2008)].

  11. M. A. Khusainov, “Investigation of the Axisymmetric Buckling of Round Plates,” Zh. Tekhn. Fiz. 67(6), 118–120 (1997) [Tech. Phys. (Engl. Transl.) 42 (6), 692–694 (1997)].

    MathSciNet  Google Scholar 

  12. G. A. Malygin, “Euler Instability of Bidirectional Shape Memory Effect in a Titanium Nickelide Strip,” Fiz. Tverd. Tela 45(12), 2233–2237 (2003) [Phys. Solid State (Engl. Transl.) 45 (12), 2342–2347 (2003)].

    Google Scholar 

  13. G. A. Malygin and M. A. Khusainov, “Stability of the Mechanical Behavior of an Arched TiNi Strip under the Conditions of the Constrained Shape Memory Effect,” Zh. Tekhn. Fiz. 74(10), 57–63 (2004) [Tech. Phys. (Engl. Transl.) 49 (10), 1301–1307 (2004)].

    Google Scholar 

  14. L. I. Shkutin, “Analysis of Axisymmetric Phase Strains in Plates and Shells,” Zh. Prikl. Mekh. Tekhn. Fiz. 48(2), 163–171 (2007) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 48 (2), 285–291 (2007)].

    MATH  Google Scholar 

  15. L. I. Shkutin, “Axisymmetric Deformation of Plates and Shells with Phase Trasformations under Thermal Cycling,” Zh. Prikl. Mekh. Tekhn. Fiz. 49(2), 204–210 (2008) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 49 (2), 330–335 (2008)].

    MathSciNet  Google Scholar 

  16. A. A. Movchan, “Micromechanical Constitutive Equations for Shape Memory Alloys,” Probl. Mashinostr. Nadezhn. Mashin, No. 6, 47–53 (1994).

  17. A. A. Movchan, “Micromechanical Description of the Deformation due to Martensite Transformations in Shape-Memory Alloys,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 197–205 (1995) [Mech. Solids (Engl. Transl.) 30 (1), 186–192 (1995)].

  18. A. A. Movchan, “Selecting a Phase-Diagram Approximation and a Model of the Disappearance of Martensite Crystals for Shape Memory Alloys,” Zh. Prikl. Mekh. Tekhn. Fiz. 36(2), 173–181 (1995) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 36 (2), 300–307 (1995)].

    Google Scholar 

  19. G. A. Malygin, “Theory of Diffuse Martensitic Phase Transitions in Ferroelastics and Shape-Memory Alloys,” Fiz. Tverd. Tela 36(5), 1489–1501 (1994) [Phys. Solid State (Engl. Transl.) 36 (5), 815–820 (1994)].

    Google Scholar 

  20. A. A. Movchan and Nyunt Soe, “Thermodynamic Description of Shape Memory Alloy Behavior Using the Gibbs Additive Potential,” Zh. Prikl. Mekh. Tekhn. Fiz. 47(4), 98–103 (2006) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 47 (4), 542–546 (2006)].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Movchan.

Additional information

Original Russian Text © A.A. Movchan, I.A. Movchan, L.G. Sil’chenko, 2010, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2010, No. 6, pp. 137–147.

About this article

Cite this article

Movchan, A.A., Movchan, I.A. & Sil’chenko, L.G. Effect of structural transformation and deformation nonlinearity on the stability of a shape memory alloy rod. Mech. Solids 45, 876–884 (2010). https://doi.org/10.3103/S0025654410060117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654410060117

Keywords

Navigation