Skip to main content
Log in

Loss of Stability of a Rod from a Shape-Memory Alloy Caused by Reverse Martensitic Transformation

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In various formulations (unbound, coupled, and double-coupled) within the framework of the concepts of “Fixed load” and “Variable load”, analytical solutions to the problem of the loss of stability of a pivotally fixed rod made of an alloy with a shape memory, the material of which undergoes inverse thermoelastic phase transformation under the action of constant compression loads in the presence of initial phase — structural compression strains. The formulation of the concept of “Variable load” is justified, within which the solution for the critical length does not depend on the magnitude of the perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Eremeev and L. M. Zubov, “On the Stability of the Equilibrium of Nonlinear Elastic Bodies Undergoing Phase Transformations”, Izv. Akad. Nauk SSSR Mekh. Tv. Tela, No. 2, 56–65 (1991).

  2. V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, “Nonuniqueness and Stability in Problems of Equilibrium of Elastic Two-Phase Bodies,” Dokl. Akad. Nauk, 391 (2), 189–193 (2003).

    MathSciNet  Google Scholar 

  3. V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, [Dokl. Phys. (Engl. Transl.) 48 (7), 359–363 (2003)]

    Google Scholar 

  4. Y. B. Fu and A. B. Freidin, “Characterization and Stability of Two-Phase Piecewise-Homogeneous Deformations,” Proc. Royal Soc. A: Math. Phys. Engng Sci. 460 (2051), 3065–3094 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. A. Movchan and S. A. Dumanskii, “Solution of The Double-Coupled Problem of Buckling of a Shape Memory Alloy Rod Due to The Direct Thermoelastic Phase Transformation,” Prikl. Mekh. Tekh. Fiz. 59 (4), 160–168 (2018)

    MathSciNet  MATH  Google Scholar 

  6. A. A. Movchan and S. A. Dumanskii, [J. App. Mech. Tech. Phys. (Engl. Transl.) 59(4), 716–723 (2018)].

    Article  ADS  Google Scholar 

  7. V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, “The Stability of the Equilibrium of Two-Phase Elastic Solids,” Prikl. Mat. Mekh. 71 (1), 66–92 (2007)

    MathSciNet  MATH  Google Scholar 

  8. V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, [J. App. Math. Mech. (Engl. Transl.) 71 (1), 61–84 (2007)].

    Article  Google Scholar 

  9. M. A. Rahman, J. Qiu, and J. Tani, Bucling and postbucling characteristics of the superelastic SMA columns Int. J. Sol. Struct. 38, 9253–9265 (2001).

    Article  MATH  Google Scholar 

  10. J. Ocel, R. DesRoches, R. T. Leon, W. G. Hess, et al., “Steel Beam — Column Connections Using Shape Memory Alloys,” J. Struct. Engng 130 (5), 739–740 (2004).

    Article  Google Scholar 

  11. Y. Urushiyama, D. Lewinnek, J. Qiu, and J. Tani, “Bucling of Shape Memory Alloy Columns,” JMSE Int. J. 2003. Ser. A. Solid. Mech. Mater. Engng 46 (1), 60–67 (2003).

    Google Scholar 

  12. M. A. Rahman and J. Tani, “Postbucling Characteristics of the Short Superelastic Shape Memory Alloy Columns — Experiment and Quantitative Analysis,” Int. J. Appl. Mech. Engng 11 (4), 941–955 (2006).

    Google Scholar 

  13. T. R. Leon, R. DesRoches, J. Ocel, and G. Hess, “Innovative Beam Column Connection Using Shape Memory Alloys,” in Smart Structure and Materials 2001: Smart System for Bridges, Structures, and Highways Ed. by S. C. Liu (Proc. SPIE, 2001), Vol. 4330, pp. 227–237.

  14. R. Watkins and J. B. Shaw, “Shape Memory Alloy Column Buckling: an Experimental Study,” in ICAST 2013 — 24th International Conference on Adaptive Structures and Technologies, 2013, pp. 270–282.

  15. M. A. Rahman, J. Qui, and J. Tani, “Bucling and Postbuclimg Characteristics of the Superelastic SMA Columns — Numerical Simulation,” J. Int. Mat. Sys. Struct. 16, 691–702 (2005).

    Article  Google Scholar 

  16. M. A. Rahman, S. R. Akanda, and M. A. Hossain, “Effect of Cross Section Geometry on the Response of an SMA Column,” J. Intel. Mat. Syst. Struct. 19, 243–252 (2008).

    Article  Google Scholar 

  17. F. Richter, O. Kastner, and G. Eggeler, “Finite Element Simulation of the Anty-Bucling Effect of a Shape Memory Alloy Bar,” J. Mat. Engng Perf. 20, 719–730 (2011).

    Article  Google Scholar 

  18. L. G. Silchenko, “A Phenomenon of the Loss of Stability in the Case of Martensite Inelasticity,” Mekh. Komp. Mat. Konst. 8 (2), 161–171 (2002)

    Google Scholar 

  19. L. G. Silchenko and T. L. Silchenko, “On the Buckling of Shape Memory Alloys Elements at Structural Transition Taking Threshold Stresses Into Account,” Mekh. Komp. Mat. Konst. 16 (4), 457–468 (2010).

    Google Scholar 

  20. J. Kunavar, F. Kozel, A. Puksic, and T. Videnic, “Geometry Optimization in Buckling of Shape Memory Alloy Columns Due to Constrained Recovery,” J. Intel. Mat. Sys. Struct. 23, 65–76 (2012).

    Article  Google Scholar 

  21. L. G. Silchenko, “Stability Cramped Rods from a Shape Memory Alloy in the Reverse Martensitic Phase Transformation,” Mekh. Komp. Mat. Konst. 10 (4), 566–576 (2004).

    Google Scholar 

  22. V. A. Eremeev, “On the Loss of Stability of Elastic Systems in the Presence of Martensitic Transformations on the Example of a Mises Farm,” Vestn. Yuzn. Nauch. Tsentr. RAN 1 (2), 91–93 (2005).

    Article  MathSciNet  Google Scholar 

  23. V. A. Eremeev, “On the Loss of Stability of a Mises Farm in the Presence of Martensitic Transformations,” Izv. Vys. Uch. Zaved. Sev.-Kav. Reg. Ser.: Est. Nauki, No. 1(13), 35–38 (2006).

    MATH  Google Scholar 

  24. A. S. Pedro, M. C. L. Pacheco, A. M. B. Bragac “Chaos in a Shape Memory Two-Bar Truss,” Int. J. Non-Lin. Mech. 37, 1387–1395 (2002).

    Article  MATH  Google Scholar 

  25. J. J. Lee and S. Choi, “Thermal Buckling and Postbuckling Analysis of a Laminated Composite Beam with Embedded SMA Actuators,” Comp. Struct. 47, 695–703 (1999).

    Article  Google Scholar 

  26. M.-Z. Kabir and B. T. Tehrani, “Closed-form Solution for Thermal, Mechanical and Thermo-mechanical Buckling and Post-buckling of SMA Composite Beams,” Comp. Struct. 168, 535–548 (2017).

    Article  Google Scholar 

  27. G. A. Malygin, “Euler Instability of Bidirectional Shape Memory Effect in a Titanium Nickelide Strip,” Fiz. Tverd. Tela 45 (12), 2233–2237 (2003)

    Google Scholar 

  28. G. A. Malygin, [Phys. Sol. State (Engl. Transl.) 45 (12), 2342–2347 (2003)].

    Article  ADS  Google Scholar 

  29. G. A. Malygin and M. A. Khusainov, “Stability of the Mechanical Behavior of an Arched TiNi Strip under the Conditions of the Constrained Shape Memory Effect,” Zh. Tekhn. Fiz. 74 (10), 57–63 (2004)

    Google Scholar 

  30. G. A. Malygin and M. A. Khusainov, [Tech. Phys. (Engl. Transl.) 49(10), 1301–1307 (2004)].

    Google Scholar 

  31. P. A. Michailidis, N. Triantafyllidis, J. A. Shaw, and D. S. Grummon, “Superelasticity and Stability of a Shape Memory Alloy Hexagonal Honeycomb under In-Plane Compression,” Int. J. Sol. Struct. 46, 2724–2738 (2009).

    Article  MATH  Google Scholar 

  32. M. A. Khusainov, “Investigation of the Axisymmetric Buckling of Round Plates,” Zh.Tekhn.Fiz. 67 (6), 118–120 (1997)

    Google Scholar 

  33. M. A. Khusainov, [Tech. Phys. (Engl. Transl.) 42(6), 692–694 (1997)].

    Google Scholar 

  34. S. Nemat-Nasser, J. Y. Choi, J. B. Isaacs, and D. W. Lisher, “Experimental Observation of High-Rate Buckling of thin Cylindrical Shape-Memory Shells,” in SPIE Proceedings, Vol. 5761 “Smart Structure and Materials 2005. Active Materials: Behavior and Mechanics,” Ed. by W. D. Armstrong (2005), pp. 347–354.

  35. Z. Tang and D. Li, “Experimental Investigation of Axial Impact Bucling Response of Pseudo-Elastic NiTi Cylindrical Shells,” Int. J. Impact Eng. 39, 28–41 (2012).

    Article  Google Scholar 

  36. Z. Tang and D. Li, “Quasi-Static Axial Bucling Behavior of TiNi Thin-Walled Cylindrical Shells,” Thin-Wall. Struct. 51, 130–138 (2012).

    Article  Google Scholar 

  37. M. R. Amini and S. Nemat-Nasser, “Dynamic Bucling and Recovery of thin Cylindrical Shells,” in SPiE Proceedings, Vol. 5761 “Smart Structure and Materials 2005. Active Materials: Behavior and Mechanics,” Ed. by W. D. Armstrong, pp. 450–453.

  38. S. Nemat-Nasser, J. Y. Choi, J. B. Isaacs, and D. W. Lisher, “Quasi-Static and Dynamic Buckling of thin Cylindrical Shape Memory Alloy Shells,” J. Appl. Mech. 73 (5), 825–833 (2006).

    Article  ADS  MATH  Google Scholar 

  39. D. Jiang, N. Bechle, C. M. Landis, and S. Kyriakides, “Buckling and Recovery of NiTi Tubes Under Axial Compression,” Int. J. Sol. Struct. 80, 52–63 (2016).

    Article  Google Scholar 

  40. D. Jiang, C. M. Landis, and S. Kyriakides, “Effects of Tension/Compression Asymmetry on the Buckling and Recovery of NiTi Tube under Axial Compression,” Int. J. Sol. Struct. 100–101, 41–53 (2016).

    Article  Google Scholar 

  41. M. A. Khusainov and O. A. Malukhina, ‘Stability Analysis of Spherical Segments with Shape Memory,” in Proceedings of the 3rd Int. Seminar “Modern Problems of Strength” Named After V. A. Likhachev (Novgorod. Univ., Novgorod, 1999), Vol. 2, pp. 185–189.

    Google Scholar 

  42. L. I. Shkutin, “Nonlinear Deformations and Catastrophes of thin Solids,” (Izd-vo SO RAN, Novosibirsk, 2014) [in Russian].

    Google Scholar 

  43. A. A. Movchan and S. A. Kazarina, “Experimental Study of Stability Loss Phenomenon due to Thermoelastic Phase Transformations under the Action of Compressing Stresses,” Probl. Mash. Nadezhn. Mashin, No. 6, 82–89 (2002).

  44. A. A. Movchan and L. G. Sil’chenko, “Buckling of a Rod Undergoing Direct or Inverse Martensite Transformation under Compressive Stresses,” Zh. Prikl. Mekh. Tekhn. Fiz. 44 (3), 169–178 (2003)

    MATH  Google Scholar 

  45. A. A. Movchan and L. G. Sil’chenko, [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 44(3), 442–449 (2003)].

    Article  ADS  Google Scholar 

  46. A. A. Movchan, I. A. Movchan, and L. G. Sil’chenko, “Effect of Structural Transformation and Deformation Nonlinearity on the Stability of a Shape Memory Alloy Rod,” Izv. Ros. Akad. Nauk Mekh. Tv. Tela, No. 6, 137–147 (2010)

  47. A. A. Movchan, I. A. Movchan, and L. G. Sil’chenko, [Mech. Sol. (Engl. Transl.) 56(6), 876–8843 (2010)].

    Google Scholar 

  48. D. V. Nushtaev and S. I. Zhavoronok, “Dynamics of Martensite Phase Transitions in Shape Memory Beams under Buckling and Postbuckling Conditions,” IFAC 51 (2), 873–878 (2018).

    Google Scholar 

  49. A. A. Movchan, and L. G. Sil’chenko, “The Stability of a Plate of Shape-Memory Alloy in a Direct Thermoelastic Phase Transition,” Prikl. Mat. Mekh. 68 (1), 60–72 (2004)

    MATH  Google Scholar 

  50. A. A. Movchan, and L. G. Sil’chenko, [J. App. Math. Mech. (Engl. Transl.) 68 (1), 53–64 (2004)].

    Article  Google Scholar 

  51. A. A. Movchan, and L. G. Sil’chenko, “Analytical Solution of the Coupled Buckling Problem for a Plate From a Shape Memory Alloy Subjected to Inverse Martensite Transformation,” Izv. Ros. Akad. Nauk Mekh. Tv. Tela, No. 5, 164–178 (2004)

  52. A. A. Movchan, and L. G. Sil’chenko, [Mech. Sol. (Engl. Transl.) 39(5), 134–145 (2004)].

    Google Scholar 

  53. A. A. Movchan, and L. G. Sil’chenko, “The Stability of a Circular Plate of Shape Memory Alloy during a Direct Martensite Transformation,” Prikl. Mat. Mekh. 70 (5), 871–883 (2006)

    MathSciNet  MATH  Google Scholar 

  54. A. A. Movchan, and L. G. Sil’chenko, [J. App. Math. Mech. (Engl. Transl.) 70(5), 785–795 (2006)].

    Article  Google Scholar 

  55. L. I. Shkutin, “Analysis of Plane Phase Strains of Rods and Plates,” Zh. Prikl. Mekh. Tekhn. Fiz. 47 (2), 156–164 (2006)

    MATH  Google Scholar 

  56. L. I. Shkutin, [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 47(2), 282–288 (2006)].

    Article  ADS  Google Scholar 

  57. A. A. Movchan, and L. G. Sil’chenko, “Buckling of a Circular Plate Made of a Shape Memory Alloy due to a Inverse Thermoelastic Martensite Transformation,” Izv. Ros. Akad. Nauk Mekh. Tv. Tela, No. 1, 117–130 (2008)

  58. A. A. Movchan, and L. G. Sil’chenko, [Mech. Sol. (Engl. Transl.) 43(1), 100–111 (2008)].

    Google Scholar 

  59. A. A. Movchan, I. A. Movchan, and L. G. Sil’chenko, “Stability of an Annular Plate of a Shape Memory Alloy,” Prikl. Mekh. Tekh. Fiz. 52(2), 144–155 (2011)

    MATH  Google Scholar 

  60. A. A. Movchan, I. A. Movchan, and L. G. Sil’chenko, [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 52(2), 279–287 (2011)].

    Article  ADS  Google Scholar 

  61. L. G. Sil’chenko, A. A. Movchan, and O. L. SilTchenko, “Stability of Cylindrical Shell Made from Shape-Memory Alloys,” Int. Appl. Mech. 50 (2), 171–178 (2014).

    Article  ADS  MATH  Google Scholar 

  62. L. I. Shkutin, “Analysis of Axisymmetric Phase Strains in Plates and Shells,” Zh. Prikl. Mekh. Tekhn. Fiz. 48(2), 163–171 (2007)

    MATH  Google Scholar 

  63. L. I. Shkutin, [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 48(2), 285–291 (2007)].

    Article  ADS  Google Scholar 

  64. A. A. Movchan and S. A. Kazarina, “Shape Memory Materials as an Object of Solid State Mechanics: Experimental Study, Constitutive Relations, Solution of Boundary Value Problems,” Fiz. Mezom. 15(1), 105–116 (2012).

    Google Scholar 

  65. A. A. Movchan and S. A. Kazarina, [Phis. Mesom. (Engl. Transl.) 15(3–4), 214–223 (2012)]

    Google Scholar 

  66. S. A. Dumanskii and A. A. Movchan, “Two-Way Coupled Statement of the Problem of Loss of Stability due to Inverse Thermoelastic Phase Transition in a Shape Memory Alloy,” Izv. Ros. Akad. Nauk Mekh. Tv. Tela, No. 5, 37–48 (2017)

  67. S. A. Dumanskii and A. A. Movchan, [Mech. Sol. (Engl. Transl.) 52(5), 501–510 (2017)].

    Google Scholar 

  68. S. A. Kazarina, A. A. Movchan, and A. L. Silchenko, “Experimental Investigation the Interaction Between Phase and Structure Deformations in Shape Memory Alloys,” Mekh. Komp. Mat. Kon. 22, (1), 85–98 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was carried out within the framework of the state budget topic, state registration number AAAA-A17-117032010136-3 with partial financial support from the RFBR (grant No. 17-01-00216_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Movchan.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 4, pp. 94–108.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumanskii, S.A., Movchan, A.A. Loss of Stability of a Rod from a Shape-Memory Alloy Caused by Reverse Martensitic Transformation. Mech. Solids 54, 929–940 (2019). https://doi.org/10.3103/S0025654419060086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419060086

Keywords

Navigation