Skip to main content
Log in

Information measuring systems in nanotechnology

  • Published:
Automatic Documentation and Mathematical Linguistics Aims and scope

Abstract

An overview is given of information measuring systems that are used in nanotechnology, which include devices such as scanning electron microscopes, scanning atomic microscopes, scanning atomic force microscopes, and manipulating tools. Their physical characteristics are described, and examples of their use in robotic nanoassembly are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnig, G., Atomic Force Microscope, Phys. Rev. Lett., 1982, vol. 49, no. l, pp. 57–61.

    Article  Google Scholar 

  2. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E., Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett., 1986, vol. 56, no. 9, pp. 930–933.

    Article  Google Scholar 

  3. Hartmann, U., Faszination Nanotechnologie, Deutschland: Spektrum Akademischer Verlag, 2005.

    Google Scholar 

  4. Lyo, L.W. and Avouris, P., Field-Induced Nanometer-Scale to Atomic Scale Manipulation of Silicon Surfaces with the STM, Science, 1991, vol. 253, pp. 173–176.

    Article  Google Scholar 

  5. Bregust, J.-V., Maserolle, S., and Rabe, R., The Laboratory in Scanning Electron Microscope Concept: Lab-in-SEM, Proc. IEEE Int. Conf. Mechatronics Robotics, Aachen, 2004, pp. 91–94.

  6. Li, G., Xi, N., Yu, M., and Fung, W.-K., Development of Augmented Reality System for AFM-based Nanomanipulation, ASME Trans. Mechatron., 2004, vol. 9, no. 2, pp. 358–365.

    Article  Google Scholar 

  7. Petrin, A.A., Processing of Sensory Data in the Problems of Micro- and Nanomanipulation, Nauchno-tehnicheskaya informatsiya, 2009, vol. 2, no. 12, pp. 10–16.

    Google Scholar 

  8. Hansen, L.T., Kuhle, A., Sorensen, A.H., Bohr, J., and Lindelof, P.E., A Technique for Positioning Nanoparticles Using an Atomic Force Microscope, Nanotechnol., 1998, vol. 9, pp. 337–342.

    Article  Google Scholar 

  9. Lozovskii, V.H., Konstantinova, G.S, and Lozovskii, S.V., Nanotechnology in Electronics. Introduction to the Profession., Saint Petersburg: Lan’, 2008.

    Google Scholar 

  10. Sarid, D., Hunt, J.P., and Workman, R.K., The Role of Adhesion in Tapping-Mode Atomic Force Microscope, Appl. Phys A. Solids Surf., 1998, vol. 66, no. 1, pp. 283–286.

    Google Scholar 

  11. Guthold, M., Falvo, M.R., Matthews, W.G., Paulson, S., Washburn, S., Erie, D.A., Superfine, R., Brooks, F.P., and Taylor, R.M., Controlled Manipulation of Molecular Samples with the Nanomanipulator, ASME Trans. Mechatron., 2000, vol. 5, no. 2, pp. 189–198.

    Article  Google Scholar 

  12. Vogl, W., Sitti, M., and Zah, M.E., Nanomanipulation with 3D Visual and Force Feedback using Atomic Force Microscopes, Proc. IEEE Int. Conf. Nanotechnology, Munich, 2004.

  13. Chen, L.-C., Huang, Y.-T., Fan, K.-C., A Dynamic 3-D Surface Profilometer with Nanoscale Measurement Resolution and MHz Bandwidth for MEMS Characterization, ASME Trans. Mechatron., 2007, vol. 12, no. 3, pp. 299–307.

    Article  Google Scholar 

  14. Eme, T., Hauert, P., Goldberg, K., Zesch, W., and Siegwart, R., Microassembly Using Auditory Display of Force Feedback, Proc. SPIE., 1999, vol. 3834, pp. 203–210.

    Article  Google Scholar 

  15. Junno, T., Deppert, K., Montelius, L., and Samuelson, L., Controlled Manipulation of Nanoparticles with an Atomic Force Microscope, Appl. Phys. Lett., 1995, vol. 66, pp. 3627–3629.

    Article  Google Scholar 

  16. Sitti, M. and Hashimoto, H., Teleoperated Touch Feedback from Surfaces at the Nanoscale Modeling and Experiments, ASME Trans. Mechatron., 2004, vol. 8, no. 2, pp. 287–299.

    Article  Google Scholar 

  17. Varadhan, G., Robinett, W., Erie, D., and Taylor, R.M., Fast Simulation of Atomic-Force-Microscope Imaging of Atomic and Polygonal Surfaces Using Graphics Hardware, Proc. SPIE Conference on Visualization and Data Analysis, San Jose, 2002.

  18. Fok, L.M., Liu, Y.H., and Li, W.J., Modeling of Haptic Sensing of Nanolitography with an Atomic Force Microscope, Proc. IEEE Int. Conf. Robotics Automation, Barcelona, 2005, pp. 2457–2462.

  19. Indermuhe, P.F., Schurman, G., Racine, G.A., and De Rooij, N.F., Atomic Force Microscopy Using Cantilevers with Integrated Tips and Piezoelectric Layers for Actuation and Detection, J. Micromech. Microeng., 1997, vol. 7, no. 3, pp. 218–220.

    Article  Google Scholar 

  20. Ferreira, A. and Mavroidis, C., Virtual Reality and Haptics for Nanorobotics, IEEE Robotics & Automation Magazine, 2006, vol. 13, no. 3, pp. 78–92.

    Article  Google Scholar 

  21. Ocamura, M., Cutcksky, M.R., and Dennerlein, J.T., Reality-Based Models for Vibration Feedback in Virtual Environments, ASME Trans. Mechatron., 2001, vol. 6, no. 3, pp. 245–252.

    Article  Google Scholar 

  22. Drexler, E., Engines of Creation, New York: Anchor Books, 1990.

    Google Scholar 

  23. Feddema, J.T., Xavier, P., and Broun, R., Micro-Assembly Planning with van der Waals Force, J. Micromechatron., 2001, vol. 1, no. 2, pp. 139–153.

    Article  Google Scholar 

  24. Petrina, A.M., From Macro to Micro Measurements: Information Processing in Robotic Systems of Micrometer Range, Nauchno-tehnicheskaya informatsiya, 2009, vol.2, no. 1, pp. 30–34.

    Google Scholar 

  25. Watanabe, T., Iwasaki, M., Matsumura, H., and Jiang, Z., Adhesion Forces Relaxation by Oscillation and Its Application to Micro Manipulation, Transactions of the Japan Society of Mechanical Engineers, 2008, vol. 7, no. 737, pp. 23–30.

    Google Scholar 

  26. Stroscio, J.A., Eigler, D.M., Atomic and Molecular Manipulation with Scanning Tunneling Microscope, Science, 1991, vol. 24, pp. 1319–1326.

    Article  Google Scholar 

  27. Nakajima, M., Arai, E., Dong, L., Nagai, M., and Fukuda, T., Hibrid Nanorobotic Manipulation System Inside Scanning Electron Microscope and Transmission Electron Microscope, Proc. IEEE Int. Conf. Intelligent Robots System, Sendai, 2004, pp. 589–594.

  28. Li, G., Xi, N., Chen, H., Saeed, A., and Yu, M., Assembly of Nanostructure Using AFM Based Nanomanipulation System, Proc. IEEE Int. Conf. Robotics Automation, New Orleans, 2004, pp. 428–433.

  29. Requicha, A.A.G., Baur, C., Bugacov, A., Gazen, B.C, Koel, B., Madhukar, A., Ramachandran, T.R., Resch, R., and Will, P., Nanorobotic Assembly of Two-Dimensional Structures, Proc. IEEE Int. Conf. Robotics and Automation, Leuven, 1998, pp. 3368–3374.

  30. Fahlbusch, S., Shirinov, A., and Fatikow, S., AFM-Based Micro Force Sensor and Haptic Interface for a Nanohandling Robot, Proc. IEEE / RSJ Int. Conf. Intelligent Robots System, Lausanne, 2002, pp. 1772–1777.

  31. Fatikow, S., Wich, T., Hulsen, H., Sievers, T., and Jahnisch, M., Microrobot System for Automatic Nanohandling Inside a Scanning Electron Microscope, ASME Trans. Mechatron., 2007, vol. 12, no. 3, pp. 244–252.

    Article  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.M. Petrina, G.M. Mainasheva, 2010, published in Nauchno-Tekhnicheskaya Informatsiya, Seriya 2, 2010, No. 7, pp. 13–23.

About this article

Cite this article

Petrina, A.M., Mainasheva, G.M. Information measuring systems in nanotechnology. Autom. Doc. Math. Linguist. 44, 187–198 (2010). https://doi.org/10.3103/S0005105510040023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0005105510040023

Key words

Navigation