Skip to main content
Log in

The Role of Specific Interactions in the Formation of Perovskite Structures

  • SOLAR ENGINEERING MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Using methylammonium lead iodide (MAPbI3) as an example, the process of complexation of molecular particles from solution at the initial stage of crystallization was studied using calculations based on the density functional theory (DFT). The calculations were carried out taking into account solvents widely used in experiments: dimethyl sulfoxide (DMSO) and N,N-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (N-MP) to analyze the structure and energy of iodoplumbate complexes in the form of simple complex [PbImXn]2 – m and polymeric iodoplumbates ([PbImXn]2 – m)x. Reaction schemes for the formation of MAPbI3 in DMSO and DMF solvents, as well as in DMF–DMSO and DMF–N–MP binary solvents, are proposed based on the calculated energies. Calculations showed the important role of NH–O hydrogen bonds in the formation of iodoplumbate monomers, as well as the imbalance of the energies of the complexes at several elementary stages of the reaction in various solvents (the formation of [PbI4Xn]2– is favorable; the formation of [PbI5Xn]3– is slowed down. Mixing a small amount of DMSO with DMF results in a better energy balance and, therefore, potentially better equilibrium in the overall crystallization process, and thus a better quality of the perovskite crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.

REFERENCES

  1. Shitiz, K., Chayal, G., Prasad, G., Khan, F., and Singh, H., Dye-sensitized solar cell based on natural dye extracted from buckwheat (Fagopyrum esculentum) flour, Appl. Sol. Energy, 2023, vol. 59, pp. 1–7. https://doi.org/10.3103/S0003701X21101011

    Article  Google Scholar 

  2. Khaitmukhamedov, A.E., Development dynamics of concentrating solar power technologies, Appl. Sol. Energy, 2022, vol. 58, pp. 318–321. https://doi.org/10.3103/S0003701X22020074

    Article  Google Scholar 

  3. Ashurov, N.R., Oksengendler, B.L., Rashidova, S.S., and Zakhidov, A.A., State and prospects of solar cells based on perovskites, Appl. Sol. Energy, 2016, vol. 52, pp. 5–15. https://doi.org/10.3103/S0003701X16010023

    Article  Google Scholar 

  4. Manisha, Pinkey, Kumari, M., Sahdev, R.K., and Tiwari, S., A review on solar photovoltaic system efficiency improving technologies, Appl. Sol. Energy, 2022, vol. 58, pp. 54–75. https://doi.org/10.3103/S0003701X22010108

    Article  Google Scholar 

  5. Huang, X., Deng, G., Zhan, Sh., Cao, F., Cheng, F., Yin, J., Li, J., Wu, B., and Zheng, N., Solvent gaming chemistry to control the quality of halide perovskite thin films for photovoltaics, ACS Central Science, 2022, vol. 8, no. 7, pp. 1008–1016. https://doi.org/10.1021/acscentsci.2c00385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shargaieva, O., Nasstrom, H., Smith, J.A., Tobbens, D., Munird, R., and Unger, E., Hybrid perovskite crystallization from binary solvent mixtures: Interplay of evaporation rate and binding strength of solvents, Mater. Adv., 2020, vol. 1, pp. 3314–3321. https://doi.org/10.1039/D0MA00815J

    Article  CAS  Google Scholar 

  7. Jo, Y., Oh, K.S., Kim, M., Kim, K.-H., Lee, H., Lee, Ch.-W., and Kim, D.S., High performance of planar perovskite solar cells produced from PbI2(DMSO) and PbI2(NMP) complexes by intramolecular exchange, Adv. Mater. Interfaces, 2016, vol. 3, p. 1500768. https://doi.org/10.1002/admi.201500768

    Article  CAS  Google Scholar 

  8. Kim, J., Park, B.-W., Baek, J., Yun, J.S., Kwon, H.-W., Seidel, J., Min, H., Coelho, S., Lim, S., Huang, Sh., Gaus, K., Green, M.A., Shin, T.J., Ho-baillie, A.W.Y., Kim, M.G., and Seok, S.I., Unveiling the relationship between the perovskite precursor solution and the resulting device performance, J. Am. Chem. Soc., 2020, vol. 142, pp. 6251–6260. https://doi.org/10.1021/jacs.0c00411

    Article  CAS  PubMed  Google Scholar 

  9. Cao, X., Zhi, L., Jia, Y., Li, Y., Zhao, K., Cui, X., Ci, L., Zhuang, D., and Wei, J., A review of the role of solvents in formation of high-quality solution-processed perovskite films, ACS Appl. Mater. Interfaces, 2019, vol. 11, pp. 7639–7654. https://doi.org/10.1021/acsami.8b16315

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, H., Darabi, K., Nia, N.Y., Krishna, A., Ahlawat, P., Guo, B., Almalki, M.H.S., Su, T.-S., Ren, D., Bolnykh, V., Castriotta, L.A., Zendehdel, M., Pan, L., Alonso, S.S., Li, R., Zakeeruddin, Sh. M., Hagfeldt, A., Rothlisberger, U., Di Carlo, A., Amassian, A., and Grätzel, M., A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics, Nat. Commun., 2022, vol. 13, p. 89. https://doi.org/10.1038/s41467-021-27740-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, F., Zhou, X., Liang, X., Duan, D., Ge, Ch.-Ye, Lin, H., Zhu, Q., Li, L., and Hu, H., Solvent engineering of ionic liquids for stable and efficient perovskite solar cells, Adv. Energy Sustainability Res., 2023, vol. 4, p. 2200140. https://doi.org/10.1002/aesr.202200140

    Article  CAS  Google Scholar 

  12. Cheng, F., Jing, X., Chen, R., Cao, J., Yan, J., Wu, Y., Huang, X., Wu, B., and Zheng, N., N-methyl-2-pyrrolidone as an excellent coordinative additive with a wide operating range for fabricating high-quality perovskite films, Inorg. Chem. Front., 2019, vol. 6, pp. 2458–2463. https://doi.org/10.1039/C9QI00547A

    Article  CAS  Google Scholar 

  13. Wu, T., Wu, J., Tu, Y., He, X., Lan, Zh., Huang, M., and Lin, J., Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%, J. Power Sources, 2017, vol. 365, pp. 1–6. https://doi.org/10.1016/j.jpowsour.2017.08.074

    Article  ADS  CAS  Google Scholar 

  14. Li, Y., Fan, H., Xu, F., Wang, T., Shan, Ch., Li, W., Gu, X., Lai, X., Luo, D., Sun, Z., Zhao, M., Li, X., Cui, K., Li, G., and Kyaw, A.K.K., High-performance inverted perovskite solar cells enhanced via partial replacement of dimethyl sulfoxide with N-methyl-2-pyrrolidinone, RRL Solar, 2022, vol. 6, p. 2200816. https://doi.org/10.1002/solr.202200816

    Article  CAS  Google Scholar 

  15. Kwon, N., Lee, J., Ko, M.J., Kim, Y.Y., and Seo, J., Recent progress of eco-friendly manufacturing process of efficient perovskite solar cells, Nano Convergence, 2023, vol. 10, p. 28. https://doi.org/10.1186/s40580-023-00375-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ortoll-Bloch, A.G., Herbol, H.C., Sorenson, B.A., Poloczek, M., Estroff, L.A., and Clancy, P., Bypassing solid-state intermediates by solvent engineering the crystallization pathway in hybrid organic-inorganic perovskites, Cryst. Growth Des., 2019, vol. 20, no 22, pp. 1162–1171. https://doi.org/10.1021/acs.cgd.9b01461

    Article  CAS  Google Scholar 

  17. Li, B., Dai, Q., Yun, S., and Tian, J., Insights into iodoplumbate complex evolution of precursor solutions for perovskite solar cells: From aging to degradation, J. Mater. Chem. A, 2021, vol. 9, pp. 6732–6748. https://doi.org/10.1039/D0TA12094D

    Article  CAS  Google Scholar 

  18. Shargaieva, O., Kuske, L., Rappich, J., Unger, E., and Nickel, N.H., Building blocks of hybrid perovskites: A photoluminescence study of lead-iodide solution species, ChemPhysChem, 2020, vol. 21, pp. 2327–2333. https://doi.org/10.1002/cphc.202000479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radicchi, E., Mosconi, E., Elisei, F., Nunzi, F., and De Angelis, F., Understanding the solution chemistry of lead halide perovskites precursors, ACS Appl. Energy Mater., 2019, vol. 2, pp. 3400–3409. https://doi.org/10.1021/acsaem.9b00206

    Article  CAS  Google Scholar 

  20. Stamplecoskie, K.G., Manser, J.S., and Kamat, P.V., Dual nature of the excited state in organic–inorganic lead halide perovskites, Energy Environ. Sci., 2015, vol. 8, pp. 208–215. https://doi.org/10.1039/C4EE02988G

    Article  CAS  Google Scholar 

  21. Lili, K., Shiqiang, L., Xiaoxue, R., and Yongbo, Y., Factors influencing the nucleation and crystal growth of solution-processed organic lead halide perovskites: A review, J. Phys. D: Appl. Phys., 2021, vol. 54, p. 163001. https://doi.org/10.1088/1361-6463/abd728

    Article  CAS  Google Scholar 

  22. Rahimnejad, S., Kovalenko, A., Martí Forés, S., Aranda, C., and Guerrero, A., Coordination chemistry dictates the structural defects in lead halide perovskites, ChemPhysChem, 2016, vol. 17, pp. 2795–2798. https://doi.org/10.1002/cphc.201600575

    Article  CAS  PubMed  Google Scholar 

  23. Valencia, A.M., Shargaieva, O., Schier, R., Unger, E., and Cocchi, C., Optical fingerprints of polynuclear complexes in lead halide perovskite precursor solutions, J. Phys. Chem. Lett., 2021, vol. 12, pp. 2299–2305. https://doi.org/10.1021/acs.jpclett.0c03741

    Article  CAS  PubMed  Google Scholar 

  24. Chowdhury, T.A., Bin Zafar, Md.A., Sajjad-Ul Islam, Md., Shahinuzzaman, M., Aminul Islam, M., and Khandaker, M.U., Stability of perovskite solar cells: Issues and prospects, RSC Adv., 2023, vol. 13, pp. 1787–1810. https://doi.org/10.1039/d2ra05903g

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo, Sh., Ren, X., Lin, H., Song, H., and Ye, J., Plasmonic photothermal catalysis for solar-to-fuel conversion: Current status and prospects, Chem. Sci., 2021, vol. 12, pp. 5701–5719. https://doi.org/10.1039/d1sc00064k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, J.W., Yu, H., Lee, K., Bae, S., Kim, J., Han, G.R., Hwang, D., Kim, S.K., and Jang, J., Highly crystalline perovskite-based photovoltaics via two-dimensional liquid cage annealing strategy, J. Am. Chem. Soc., 2019, vol. 141, pp. 5808–5814. https://doi.org/10.1021/jacs.8b13423

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, J., Zhang, L., Zhang, L., Li, X., Zhu, X., Yu, J., and Fan, K., Binary solvent engineering for high-performance two-dimensional perovskite solar cells, ACS Sustainable Chem. Eng., 2019, vol. 7, pp. 3487–3495. https://doi.org/10.1021/acssuschemeng.8b05734

    Article  CAS  Google Scholar 

  28. Chen, S., Xiao, X., Chen, B., Kelly, L.L., Zhao, J., Lin, Y., Toney, M.F., and Huang, J., Crystallization in one-step solution deposition of perovskite films: Upward or downward?, Sci. Adv., 2021, vol. 7, p. eabb2412. https://doi.org/10.1126/sciadv.abb2412

  29. Chen, J., Xiong, Y., Rong, Y., Mei, A., Sheng, Y., Jiang, P., Hu, Y., Li, X., and Han, H., Promise of commercialization: Carbon materials for low-cost perovskite solar cells, Nano Energy, 2016, vol. 27, pp. 130–137. https://doi.org/10.1088/1674-1056/27/1/018805

    Article  CAS  Google Scholar 

  30. Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., and Park, N.-G., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide, J. Am. Chem. Soc., 2015, vol. 137, pp. 8696–8699. https://doi.org/10.1021/jacs.5b04930

    Article  CAS  PubMed  Google Scholar 

  31. Arain, Z., Liu, C., Yang, Y., Mateen, M., Ren, Y., Ding, Y., Liu, X., Ali, Z., Kumar, M., and Dai, S., Elucidating the dynamics of solvent engineering for perovskite solar cells, Sci. China Mater., 2019, vol. 62, pp. 161–172. https://doi.org/10.1007/s40843-018-9336-1

    Article  CAS  Google Scholar 

  32. Stevenson, J., Sorenson, B., Subramaniam, V.H., Raiford, J., Khlyabich, P.P., Loo, Y.-L., and Clancy, P., Understanding the solution chemistry of lead halide perovskites precursors, Chem. Mater., 2016, vol. 29, pp. 2435–2444. https://doi.org/10.1021/acsaem.9b00206

    Article  CAS  Google Scholar 

  33. Sahu, S. and Tiwari, S., Analysis of pseudo-homogeneous and bulk charge transfer in dye-sensitized solar cells, Appl. Sol. Energy, 2021, vol. 57, pp. 355–362. https://doi.org/10.3103/S0003701X21050145

    Article  Google Scholar 

  34. Guryev, V.V., Yakimovich, B.A., Abd Ali, L.M., et al., Improvement of methods for predicting the generation capacity of solar power plants: The case of the power systems in the Republic of Crimea and city of Sevastopol, Appl. Sol. Energy, 2019, vol. 55, pp. 242–246. https://doi.org/10.3103/S0003701X19040042

    Article  Google Scholar 

  35. Chandrakanta, M., Tiwari, S., and Solanki, P.P., Correlation between photoelectrochemical and spectrophotometric study of dye-surfactant combination in photogalvanic cell, Appl. Sol. Energy, 2019, vol. 55, pp. 18–29. https://doi.org/10.3103/S0003701X19010092

    Article  Google Scholar 

  36. Oksengendler, B.L., Ashurov, N.R., Maksimov, S.E., Akhmedov, M.I., and Nurgaliev, I.N., Mechanisms of radiation degradation of solar cells based on organic-inorganic perovskites, Appl. Sol. Energy, 2017, vol. 53, pp. 326–333. https://doi.org/10.3103/S0003701X17040119

    Article  Google Scholar 

  37. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Swart, M. and Bickelhaupt, F.M., Proton affinities of anionic bases: Trends across the periodic table, structural effects, and DFT validation, J. Chem. Theory Comput., 2006, vol. 2, pp. 281–287. https://doi.org/10.1021/ct0502460

    Article  CAS  PubMed  Google Scholar 

  39. Swart, M., Rösler, E., and Bickelhaupt, F.M., Proton affinities of maingroup-element hydrides and noble gases: Trends across the periodic table, structural effects, and DFT validation, J. Comput. Chem., 2006, vol. 27, pp. 1486–1493. https://doi.org/10.1002/jcc.20431

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Professor Thomas Riedl (University of Wuppertal) for supporting this work, as well as Dr. Kai Oliver Brinkmann (University of Wuppertal) and Professor Nicola Seriani (Abdus Salam Center for Theoretical Physics) for participating in the discussion of the results.

Funding

The work was supported by the World Bank within the framework of the scientific project, Perovskite Solar Cells with Optimized Performance and Stability, no. REP-24112021/33 guided by N.R. Ashurov of 2022–2024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Nurgaliev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Kuznetsova

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurgaliev, I.N., Marasulov, M.B. & Ashurov, N.R. The Role of Specific Interactions in the Formation of Perovskite Structures. Appl. Sol. Energy 59, 612–620 (2023). https://doi.org/10.3103/S0003701X23601746

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X23601746

Keywords:

Navigation