Skip to main content
Log in

Elucidating the dynamics of solvent engineering for perovskite solar cells

钙钛矿太阳电池溶剂工程的动力学阐述

  • Review
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Researchers working in the field of photovoltaic are exploring novel materials for the efficient solar energy conversion. The prime objective of the discovery of every novel photovoltaic material is to achieve more energy yield with easy fabrication process and less production cost features. Perovskite solar cells (PSCs) delivering the highest efficiency in the passing years with different stoichiometry and fabrication modification has made this technology a potent candidate for future energy conversion materials. Till now, many studies have shown that the quality of active layer morphology, to a great extent, determines the performance of PSCs. The current and potential techniques of solvent engineering for good active layer morphology are mainly debated using primary solvent, co-solvent (Lewis acid-base adduct approach) and solvent additives. In this review, the dynamics of numerously reported solvents on the morphological characteristics of PSCs active layer are discussed in detail. The intention is to get a clear understanding of solvent engineering induced modifications on active layer morphology in PSC devices via different crystallization routes. At last, an attempt is made to draw a framework based on different solvent coordination properties to make it easy for screening the potent solvent contender for desired PSCs precursor for a better and feasible device.

摘要

光伏领域的研究者们在不断探索可以用于高效太阳能转换的新材料. 研究每种新型光伏材料的主要目的是通过简单的制造工艺和 较低的生产成本来实现更高的能量产出. 新兴的钙钛矿材料也在竞争行列之中. 通过不同的化学计量调控和工艺改进, 钙钛矿太阳电池在 过去的几年中实现了最高的光电转换效率, 这一技术已经成为未来能量转换材料的有力候选者. 到目前为止, 许多研究表明活性层的薄膜 质量在很大程度上决定了钙钛矿太阳电池的光电性能. 当前和潜在的用于制备良好活性层形貌的溶剂工程技术大体上是使用主要溶剂、 共溶剂(路易斯酸-碱加合方法)和溶剂添加剂来实现. 在这篇综述中, 我们详细讨论了多种已报道的溶剂工程动力学对钙钛矿太阳电池活 性层形态特征的影响. 目的是通过不同的结晶过程得到一个关于溶剂工程如何诱导钙钛矿太阳电池活性层形貌的清晰的认知. 最后, 我们 基于不同溶剂的配位性质绘制了一个基本框架, 便于筛选可用来制备钙钛矿前驱体的有效溶剂, 以获得性能更好和可行性更高的光伏器件.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng Z, Lin J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm, 2010, 12: 2646

    Article  Google Scholar 

  2. Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344

    Article  Google Scholar 

  3. Ren YK, Ding XH, Wu YH, et al. Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells. J Mater Chem A, 2017, 5: 20327–20333

    Article  Google Scholar 

  4. Liu C, Yang Y, Ding Y, et al. High-efficiency and UV-stable planar perovskite solar cells using a low-temperature, solution-processed electron-transport layer. ChemSusChem, 2018, 11: 1232–1237

    Article  Google Scholar 

  5. Im JH, Lee CR, Lee JW, et al. 6.5% efficient perovskite quantumdot-sensitized solar cell. Nanoscale, 2011, 3: 4088–4093

    Article  Google Scholar 

  6. Yang WS, Park BW, Jung EH, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356: 1376–1379

    Article  Google Scholar 

  7. Green MA, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 46). Prog Photovolt-Res Appl, 2015, 23: 805–812

    Article  Google Scholar 

  8. Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347

    Article  Google Scholar 

  9. Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347: 519–522

    Article  Google Scholar 

  10. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398

    Article  Google Scholar 

  11. Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319

    Article  Google Scholar 

  12. Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc, 2014, 136: 622–625

    Article  Google Scholar 

  13. Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 53: 9898–9903

    Article  Google Scholar 

  14. Liang PW, Liao CY, Chueh CC, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater, 2014, 26: 3748–3754

    Article  Google Scholar 

  15. Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for highperformance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903

    Article  Google Scholar 

  16. Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9: 444–449

    Article  Google Scholar 

  17. Luo J, Im JH, Mayer MT, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science, 2014, 345: 1593–1596

    Article  Google Scholar 

  18. Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967–970

    Article  Google Scholar 

  19. de Quilettes DW, Vorpahl SM, Stranks SD, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348: 683–686

    Article  Google Scholar 

  20. Stranks SD, Burlakov VM, Leijtens T, et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys Rev Appl, 2014, 2: 034007

    Article  Google Scholar 

  21. Mehmood U, Al-Ahmed A, Afzaal M, et al. Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renew Sust Energ Rev, 2017, 78: 1–14

    Article  Google Scholar 

  22. Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237

    Article  Google Scholar 

  23. Ahn N, Son DY, Jang IH, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J Am Chem Soc, 2015, 137: 8696–8699

    Article  Google Scholar 

  24. Kim HB, Choi H, Jeong J, et al. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6: 6679–6683

    Article  Google Scholar 

  25. Lian J, Wang Q, Yuan Y, et al. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. J Mater Chem A, 2015, 3: 9146–9151

    Article  Google Scholar 

  26. Cai B, Zhang WH, Qiu J. Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells. Chin J Catal, 2015, 36: 1183–1190

    Article  Google Scholar 

  27. Song TB, Chen Q, Zhou H, et al. Perovskite solar cells: film formation and properties. J Mater Chem A, 2015, 3: 9032–9050

    Article  Google Scholar 

  28. Wu Y, Islam A, Yang X, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ Sci, 2014, 7: 2934–2938

    Article  Google Scholar 

  29. Chen J, Xiong Y, Rong Y, et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy, 2016, 27: 130–137

    Article  Google Scholar 

  30. Lin SQ, Li W, Sun, HC, et al. Effects of different solvents on the planar hetero-junction perovskite solar cells. ICETA, 2015, 22: 05002

    Google Scholar 

  31. Seo YH, Kim EC, Cho SP, et al. High-performance planar perovskite solar cells: Influence of solvent upon performance. Appl Mater Today, 2017, 9: 598–604

    Article  Google Scholar 

  32. Guo X, McCleese C, Kolodziej C, et al. Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Trans, 2016, 45: 3806–3813

    Article  Google Scholar 

  33. Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347: 522–525

    Article  Google Scholar 

  34. Aldibaja FK, Badia L, Mas-Marzá E, et al. Effect of different lead precursors on perovskite solar cell performance and stability. J Mater Chem A, 2015, 3: 9194–9200

    Article  Google Scholar 

  35. Xie FX, Zhang D, Su H, et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano, 2015, 9: 639–646

    Article  Google Scholar 

  36. Fang X, Wu Y, Lu Y, et al. Annealing-free perovskite films based on solvent engineering for efficient solar cells. J Mater Chem C, 2017, 5: 842–847

    Article  Google Scholar 

  37. Dubey A, Kantack N, Adhikari N, et al. Room temperature, air crystallized perovskite film for high performance solar cells. J Mater Chem A, 2016, 4: 10231–10240

    Article  Google Scholar 

  38. Zuo L, Dong S, De Marco N, et al. Morphology evolution of high efficiency perovskite solar cells via vapor induced intermediate phases. J Am Chem Soc, 2016, 138: 15710–15716

    Article  Google Scholar 

  39. Rong Y, Tang Z, Zhao Y, et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7: 10595–10599

    Article  Google Scholar 

  40. Wakamiya A, Endo M, Sasamori T, et al. Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem Lett, 2014, 43: 711–713

    Article  Google Scholar 

  41. Li W, Fan J, Li J, et al. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J Am Chem Soc, 2015, 137: 10399–10405

    Article  Google Scholar 

  42. Miyamae H, Numahata Y, Nagata M. The crystal structure of lead (II) iodide-dimethylsulphoxide(1/2), PbI2(DMSO)2. Chem Lett, 1980, 9: 663–664

    Article  Google Scholar 

  43. Dualeh A, Tétreault N, Moehl T, et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv Funct Mater, 2014, 24: 3250–3258

    Article  Google Scholar 

  44. Ren Y, Duan B, Xu Y, et al. New insight into solvent engineering technology from evolution of intermediates via one-step spincoating approach. Sci China Mater, 2017, 60: 392–398

    Article  Google Scholar 

  45. Krautscheid H, Vielsack F. Discrete and polymeric iodoplumbates with Pb3I10 building blocks: [Pb3I10] 4-, [Pb7I22]8-, [Pb10I28]8-, 1 8[Pb3I10]4-and 2 8[Pb7I18]4-. Dalton Trans, 1999, 16: 2731–2735

    Article  Google Scholar 

  46. Krautscheid H, Vielsack F. [BuN(CH2CH2)3NBu]3[Pb5I16] · 4DMF–ein Iodoplumbat mit Nahe zu D5h-symmetrischem Anion. Z Anorg Allg Chem, 2000, 626: 3–5

    Article  Google Scholar 

  47. Wharf I, Gramstad T, Makhija R, et al. Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands. Can J Chem, 1976, 54: 3430–3438

    Article  Google Scholar 

  48. Ren YK, Liu SD, Duan B, et al. Controllable intermediates by molecular self-assembly for optimizing the fabrication of largegrain perovskite films via one-step spin-coating. J Alloys Compd, 2017, 705: 205–210

    Article  Google Scholar 

  49. Pavia DL, Lampman GM, Kriz GS, et al. Introduction to Spectroscopy (4th Edition). Belmont: Cengage Learning, 2009

    Google Scholar 

  50. Colthup NB, Daly LH, Wiberley SE. Introduction to Infrared and Raman Spectroscopy (Second Edition). New York: Academic Press, 1975

    Google Scholar 

  51. Lee JW, Kim HS, Park NG. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc Chem Res, 2016, 49: 311–319

    Article  Google Scholar 

  52. Madhurambal G, Mariappan M, Mojumdar SC. TG–DTA, UV and FTIR spectroscopic studies of urea–thiourea mixed crystal. J Therm Anal Calorim, 2010, 100: 853–856

    Article  Google Scholar 

  53. Seo YH, Kim EC, Cho SP, et al. Hysteresis data of planar perovskite solar cells fabricated with different solvents. Data Brief, 2018, 16: 418–422

    Article  Google Scholar 

  54. Zhang Y, Gao P, Oveisi E, et al. PbI2–HMPA complex pretreatment for highly reproducible and efficient CH3NH3PbI3 perovskite solar cells. J Am Chem Soc, 2016, 138: 14380–14387

    Article  Google Scholar 

  55. Wu T, Wu J, Tu Y, et al. Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. J Power Sources, 2017, 365: 1–6

    Article  Google Scholar 

  56. Hao F, Stoumpos CC, Guo P, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc, 2015, 137: 11445–11452

    Article  Google Scholar 

  57. Eperon GE, Stranks SD, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7: 982

    Article  Google Scholar 

  58. Yang L, Wang J, Leung WWF. Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells. ACS Appl Mater Interfaces, 2015, 7: 14614–14619

    Article  Google Scholar 

  59. Carnie MJ, Charbonneau C, Davies ML, et al. A one-step low temperature processing route for organolead halide perovskite solar cells. Chem Commun, 2013, 49: 7893

    Article  Google Scholar 

  60. Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J Phys Chem C, 2014, 118: 9412–9418

    Article  Google Scholar 

  61. Chang CY, Chu CY, Huang YC, et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl Mater Interfaces, 2015, 7: 4955–4961

    Article  Google Scholar 

  62. Zhang H, Mao J, He H, et al. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planarheterojunction solar cells. Adv Energy Mater, 2015, 5: 1501354

    Article  Google Scholar 

  63. Shi Y, Wang X, Zhang H, et al. Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells. J Mater Chem A, 2015, 3: 22191–22198

    Article  Google Scholar 

  64. Zhi L, Li Y, Cao X, et al. Perovskite solar cells fabricated by using an environmental friendly aprotic polar additive of 1,3-dimethyl-2-imidazolidinone. Nanoscale Res Lett, 2017, 12: 632

    Article  Google Scholar 

  65. Lo CC, Chao PM. Replacement of carcinogenic solvent HMPA by DMI in insect sex pheromone synthesis. J Chem Ecol, 1990, 16: 3245–3253

    Article  Google Scholar 

  66. Gong X, Li M, Shi XB, et al. Controllable perovskite crystallization by water additive for high-performance solar cells. Adv Funct Mater, 2015, 25: 6671–6678

    Article  Google Scholar 

  67. Li L, Chen Y, Liu Z, et al. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv Mater, 2016, 28: 9862–9868

    Article  Google Scholar 

  68. Stamplecoskie KG, Manser JS, Kamat PV. Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy Environ Sci, 2015, 8: 208–215

    Article  Google Scholar 

  69. Stewart RJ, Grieco C, Larsen AV, et al. Molecular origins of defects in organohalide perovskites and their influence on charge carrier dynamics. J Phys Chem C, 2016, 120: 12392–12402

    Article  Google Scholar 

  70. Yoon SJ, Stamplecoskie KG, Kamat PV. How lead halide complex chemistry dictates the composition of mixed halide perovskites. J Phys Chem Lett, 2016, 7: 1368–1373

    Article  Google Scholar 

  71. Rahimnejad S, Kovalenko A, Forés SM, et al. Coordination chemistry dictates the structural defects in lead halide perovskites. ChemPhysChem, 2016, 17: 2795–2798

    Article  Google Scholar 

  72. Sharenko A, Mackeen C, Jewell L, et al. Evolution of iodoplumbate complexes in methylammonium lead iodide perovskite precursor solutions. Chem Mater, 2017, 29: 1315–1320

    Article  Google Scholar 

  73. Manser JS, Saidaminov MI, Christians JA, et al. Making and breaking of lead halide perovskites. Acc Chem Res, 2016, 49: 330–338

    Article  Google Scholar 

  74. Saidaminov MI, Abdelhady AL, Maculan G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem Commun, 2015, 51: 17658–17661

    Article  Google Scholar 

  75. Gardner KL, Tait JG, Merckx T, et al. Nonhazardous solvent systems for processing perovskite photovoltaics. Adv Energy Mater, 2016, 6: 1600386

    Article  Google Scholar 

  76. Stevenson J, Sorenson B, Subramaniam VH, et al. Mayer bond order as a metric of complexation effectiveness in lead halide perovskite solutions. Chem Mater, 2017, 29: 2435–2444

    Article  Google Scholar 

  77. Hamill Jr. JC, Schwartz J, Loo YL. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Lett, 2018, 3: 92–97

    Article  Google Scholar 

  78. Saidaminov MI, Abdelhady AL, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6: 7586

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0202400), the 111 project (B16016), and the National Natural Science Foundation of China (51572080, 51702096, and U1705256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Ding  (丁勇) or Songyuan Dai  (戴松元).

Additional information

Zulqarnain Arain obtained his BSc degree from QUEST University, Pakistan in 2014. He is a Master student of the North China Electric Power University under the supervision of Prof. Yong Ding and Prof. Songyuan Dai. He is also a faculty member of Energy System Engineering Dept. SIBA University, Pakistan and currently on study Leave. His research interests mainly focus on perovskite solar cells.

Yong Ding is a lecturer in Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University. He received his PhD degree in physical chemistry from Hefei Institutes of Physical Science, Chinese Academy of Sciences in 2011. His research interest is novel-type solar cells, including dye-sensitized solar cells and perovskite solar cells.

Songyuan Dai is a professor and Dean of the School of Renewable Energy, North China Electric Power University. He obtained his BSc degree in physics from Anhui Normal University in 1987, and MSc and PhD degrees in plasma physics from the Institute of Plasma Physics, Chinese Academy of Sciences in 1991 and 2001, respectively. His research interests mainly focus on the next-generation solar cells including dye-sensitized solar cells, quantum dot solar cells, perovskite solar cells, etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arain, Z., Liu, C., Yang, Y. et al. Elucidating the dynamics of solvent engineering for perovskite solar cells. Sci. China Mater. 62, 161–172 (2019). https://doi.org/10.1007/s40843-018-9336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-018-9336-1

Keywords

Navigation