Skip to main content
Log in

Solar-Pumped Multi-Rod Laser on a Separate Heliostat of Big Solar Furnace

  • SOLAR ENERGY CONCENTRATORS
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

A study was carried out by means of computer simulation of solar-to-laser-power conversion process using Monte-Carlo ray-tracing methods in solar concentrators with spot sizes exceeding the transverse dimensions of commonly used active media by several or more times. It is shown that, in such cases, the use of one active medium for pumping does not allow achieving high conversion efficiency, and in this connection, a new multi-rod system is proposed, which makes it possible to increase the efficiency by several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Krupkin, V., Kagan, J.A., and Yogev, A., Nonimaging optics and solar laser pumping at the Weizmann Institute, Proc. SPIE 2016, Nonimaging Optics: Maximum-Efficiency Light Transfer II, 1993, vol. 2016, p. 50. https://doi.org/10.1117/12.161945

    Article  Google Scholar 

  2. Fazilov, A., Riskiev, T.T., Abdurakhmanov, A.A., Bakhramov, S.A., Makhkamov, S., Mansurov, M.M., Mukhamediev, E.J., Paiziev, Sh.D., Klychev, Sh.I., Saribaev, A.S., and Kasimov, A.K., Concentrated solar energy conversion to powerful laser radiation on neodymium activated yttrium-aluminum garnet, Appl. Sol. Energy, 2008, vol. 44, no. 2, pp. 93–96.

    Article  Google Scholar 

  3. Thompson, G.A., Krupkin, V., Yogev, A., and Oron, M.B., Solar-pumped Nd:Cr:GSGG parallel array laser, Opt. Eng., 1992, vol. 31, no. 12. https://doi.org/10.1117/12.60023

  4. Tibúrcio, B.D., Liang, D., Almeida, J., Garcia, D., and Vistas, C.R., Dual-rod pumping approach for tracking error compensation in solar-pumped lasers, J. Photonics Energy, 2019, vol. 9, no. 2, id. 028001.

  5. Almeida, J., Liang, D., Costa, H., Garcia, D., Tibúrcio, B.D., Catela, M., and Vistas, C.R., Seven-rod pumping concept for simultaneous emission of seven TEM00-mode solar laser beams, J. Photonics Energy, 2020, vol. 10, no. 3, id. 038001.

  6. Costa, H., Almeida, J., Liang, D., Garcia, D., Catela, M., Tibúrcio, B.D., and Vistas, C.R., Design of a multibeam solar laser station for a megawatt solar furnace, Opt. Eng., 2020, vol. 59, no. 8, id. 086103.

  7. Catela, M., Liang, D., Vistas, C. R., Garcia, D., Tibúrcio, B.D., Costa, H., and Almeida, J., Six-rod/six-beam concept for revitalizing TEM 00 mode lamp-pumped lasers, Opt. Eng., 2020, vol. 59, no. 12, id. 126108.

  8. Lando, M., Kagan, J., Linyekin, B., and Dobrusin, V., A solar-pumped Nd:YAG laser in the high collection efficiency regime, Opt. Commun., 2003, vol. 222, nos. 1–6, pp. 371–381.

    Article  Google Scholar 

  9. Costa, H., Almeida, J., Liang, D., Catela, M., Garcia, D., Tibúrcio, B.D., and Vistas, C.R., Zigzag multirod laser beam merging approach for brighter TEM00-mode solar laser emission from a megawatt solar furnace, Energies, 2021, vol. 14, no. 17, p. 5437.

    Article  Google Scholar 

  10. Liang, D., Almeida, J., Garcia, D., Tibúrcio, B.D., Guillot, E., and Vistas, C.R., Simultaneous solar laser emissions from three Nd:YAG rods within a single pump cavity, Sol. Energy, 2020, vol. 199, pp. 192–197.

    Article  Google Scholar 

  11. Costa, H., Almeida, J., Liang, D., Tibúrcio, B.D., Garcia, D., Catela, M., and Vistas, C.R., Quasi-Gaussian multibeam solar laser station for a megawatt solar furnace, J. Sol. Energy Res. Updates, 2021, vol. 8, pp. 11–20.

    Article  Google Scholar 

  12. Payziyev, Sh., Bakhramov, S., Klichev, Sh., Kasimov, A., Riskiev, T., Abdurakhmanov, A., and Fazilov, A., Big solar furnace as pumping source for high power lasers, Proc. SPIE 6871, Solid State Lasers XVII: Technology and Devices, 2008, vol. 6871, id. 68712E.

  13. Bakhramov, S., Payziyev, S., and Kasimov, A., Feasibility of creation of ceramic disk laser pumped by concentrated solar flux of big solar furnace, J. Renewable Sustainable Energy, 2009, vol. 1, no. 6, id. 063103.

  14. Payziyev, Sh., Bakhramov, S., Yagi, H., Abdurakhmanov, A., and Fazilov, A., Ceramic Nd3+:Cr3+:YAG laser pumped by high-power concentrated solar flux, Proc. SPIE 6871, Solid State Lasers XVII: Technology and Devices, 2008, vol. 6871, id. 68712G.

  15. Riskiev, T.T., and Suleimanov, S.K., Double mirror polyheliostat solar furnace of 1000 kW thermal power, Sol. Energy Mater., 1991, vol. 24, nos. 1–4, pp. 625–632.

    Article  Google Scholar 

  16. Akbarov, R.Y., and Paizullakhanov, M.S., Characteristic features of the energy modes of a large solar furnace with a capacity of 1000 kW, Appl. Sol. Energy, 2018, vol. 54, no. 2, pp. 99–109.

    Article  Google Scholar 

  17. Payziyev, Sh. and Makhmudov, Kh., A new approach in solar-to-laser power conversion based on the use of external solar spectrum frequency converters, J. Renewable Sustainable Energy, 2016, vol. 8, id. 015902.

  18. Payziyev, Sh. and Makhmudov, Kh., Solar pumped Nd:YAG laser efficiency enhancement using Cr:LiCAF frequency down-shifter, Opt. Commun., 2016, vol. 380, pp. 57–60.

    Article  Google Scholar 

  19. Koechner, W., Solid-State Laser Engineering, Springer Series in Optical Sciences, vol. 1, New York: Springer, 2013.

  20. Weksler, M. and Shwartz, J., Solar-pumped solid-state lasers, IEEE J. Quantum Electron., 1988, vol. 24, no. 6, pp. 1222–1228.

    Article  Google Scholar 

  21. Payziyev, S., Makhmudov, K., and Abdel-Hadi, Y.A., Simulation of a new solar Ce:Nd:YAG laser system, Optik, 2018, vol. 156, pp. 891–895.

    Article  Google Scholar 

  22. Vistas, C.R., Liang, D., Almeida, J., Tibúrcio, B.D., Garcia, D., Catela, M., Costa, H., and Guillot, E., Ce:Nd:YAG side-pumped solar laser, J. Photonics Energy, 2021, vol. 11, no. 1, id. 018001.

  23. Lulu Wang, Changtai Xia, Peng Xu, Juqing Di, Qinglin Sai, and Fei Mou, Energy transfer in Ce, Nd, and Yb co-doped YAG phosphors, Chin. Opt. Lett., 2013, vol. 11, id. 061604.

  24. Payziyev, S., Sherniyozov, A., Bakhramov, S., Zikrillayev, K., Khalikov, G., Makhmudov, K., Ismailov, M., and Payziyeva, D., Luminescence sensitization properties of Ce:Nd:YAG materials for solar pumped lasers, Opt. Commun., 2021, vol. 499, id. 127283.

  25. Liang, D., Almeida, J., Tibúrcio, B.D., Catela, M., Garcia, D., Costa, H., and Vistas, C.R., Seven-rod pumping approach for the most efficient production of TEM00 mode solar laser power by a Fresnel lens, J. Sol. Energy Eng., 2021, vol. 143, no. 6, id. 061004.

  26. Bakhramov, S.A., Sherniyozov, A.A., Payziyev, S.D., Zikrillayev, K.F., Khalikov, G.A., Makhmudov, K.M., Ismailov, M.Z., Payziyeva, D.E., and Khottchenkova, T.G., Feasibility of luminophores in solar-pumped laser heads, J. Appl. Spectrosc., 2021, vol. 88, no. 2, pp. 370–372.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work has been performed within the framework of the projects OT-F3-10 “Research and development of the physical basis of solar-to-laser-power conversion processes” and MRU-FA-75/2017 “Modification of solar radiation spectrum for efficient conversion of solar power into laser power.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Payziyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payziyev, S., Makhmudov, K., Bakhramov, S. et al. Solar-Pumped Multi-Rod Laser on a Separate Heliostat of Big Solar Furnace. Appl. Sol. Energy 57, 541–551 (2021). https://doi.org/10.3103/S0003701X2106013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X2106013X

Keywords:

Navigation