Skip to main content
Log in

Enhanced Emission Properties of Anodized Polar ZnO Crystals

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Polar ZnO single crystals were microstructured in a controlled fashion by electrochemical etching. Surfaces with pyramids and inversed pyramids on oxygen and zinc faces, respectively, were received. Photoluminescence spectra of bulk and anodized ZnO samples were investigated at room and low temperatures. Cathodoluminescence images were also recorded from areas with different structures. A significant enhancement of light emission of the prepared microstructures was achieved after anodization. This allows to use such microstructures in light emitting devices and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Klingshirn, C., ZnO: From basics towards applications, Phys. Status Solidi B, 2007, vol. 244, p. 3027. https://doi.org/10.1002/pssb.200790012

    Article  Google Scholar 

  2. Pearton, S.J., Norton, D.P., Heo, Y.W., Tien, L.C., et al., ZnO spintronics and nanowire devices, J. Electron. Mater., 2006, vol. 35, p. 862. https://doi.org/10.1007/BF02692541

    Article  Google Scholar 

  3. Skhouni, O., El Manouni, A., Mari, B., and Ullah, H., Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance, Eur. Phys. J.: Appl. Phys., 2016, vol. 74, p. 24602. https://doi.org/10.1051/epjap/2015150365

    Article  Google Scholar 

  4. Thomas, D.G., The exciton spectrum of zinc oxide, J. Phys. Chem. Solids, 1960, vol. 15, p. 86. https://doi.org/10.1016/0022-3697(60)90104-9

    Article  Google Scholar 

  5. Park, Y.S., Litton, C.W., Collins, T.C., and Reynolds, D.C., Exciton spectrum of ZnO, Phys. Rev., 1966, vol. 143, p. 512. https://doi.org/10.1103/PhysRev.143.512

    Article  Google Scholar 

  6. Segall, B., Intrinsic absorption “edge” in II–VI semiconducting compounds with the wurtzite structure, Phys. Rev., 1967, vol. 163, p. 769. https://doi.org/10.1103/PhysRev.163.769

    Article  Google Scholar 

  7. Liang W.Y. and Yoffe, A.D., Transmission spectra of ZnO single crystals, Phys. Rev. Lett., 1968, vol. 20, pp. 59–61. https://doi.org/10.1103/PhysRevLett.20.59

    Article  Google Scholar 

  8. Klingshirn, C.F., Meyer, B.K., Waag, A., Hoffmann, A., et al., Zinc Oxide: From Fundamental Properties towards Novel Applications, New York: Springer-Verlag, 2010, pp. 1–120. https://doi.org/10.1007/978-3-642-10577-7

    Book  Google Scholar 

  9. Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., et al., A comprehensive review of ZnO materials and devices, J. Appl. Phys., 2005, vol. 98, p. 041301. https://doi.org/10.1063/1.1992666

    Article  Google Scholar 

  10. Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., et al., Bound exciton and donor–acceptor pair recombinations in ZnO, Phys. Status Solidi B, 2004, vol. 241, pp. 231–260. https://doi.org/10.1002/pssb.200301962

    Article  Google Scholar 

  11. Colibaba, G.V., Monaico, E.V., Goncearenco, E.P., Nedeoglo, D.D., et al., Growth of ZnCdS single crystals and prospects of their application as nanoporous structures, Semicond. Sci. Technol., 2014, vol. 29, p. 125003. https://doi.org/10.1088/0268-1242/29/12/125003

    Article  Google Scholar 

  12. Colibaba, G., Monaico, E.V., Goncearenco, E., Inculet, I., et al., Features of nanotemplates manufacturing on the II–VI compound substrates, in Proc. 3rd Int. Conf. on Nanotechnologies and Biomedical Engineering (ICNBME-2015), September 23–26, 2015, Chisinau, Republic of Moldova, IFMBE Proc. Series vol. 55, New York: Springer-Verlag, 2016, p. 188.

  13. Skupiński, P., Grasza, K., Mycielski, A., Paszkowicz, W., et al., Seeded growth of bulk ZnO by chemical vapor transport, Phys. Status Solidi B, 2010, vol. 247, p. 1457. https://doi.org/10.1002/pssb.200983232

    Article  Google Scholar 

  14. Hong, S.-H., Mikami, M., Mimura, K., Uchikoshi, M., et al., Growth of high-quality ZnO single crystals by seeded CVT using the newly designed ampoule, J. Cryst. Growth, 2009, vol. 311, p. 3609. https://doi.org/10.1016/j.jcrysgro.2009.05.015

    Article  Google Scholar 

  15. Colibaba, G.V., ZnO:HCl single crystals: Thermo-dynamic analysis of CVT system, feature of growth and characterization, Solid State Sci., 2016, vol. 56, p. 1. https://doi.org/j.solidstatesciences.2016.03.011

  16. Colibaba, G.V., Halide-hydrogen vapor transport for growth of ZnO single crystals with controllable electrical parameters, Mater. Sci. Semicond. Process., 2016, vol. 43, p. 75. https://doi.org/10.1016/j.mssp.2015.12.005

    Article  Google Scholar 

  17. Colibaba, G.V., Halide-oxide carbon vapor transport of ZnO: novel approach for unseeded growth of single crystals with controllable growth direction, J. Phys. Chem. Solids, 2018, vol. 116, p. 58. https://doi.org/10.1016/j.jpcs.2018.01.009

    Article  Google Scholar 

  18. Colibaba, G.V., Halide-carbon vapor transport of ZnO and its application perspectives for doping with multivalent metals, J. Solid State Chem., 2018, vol. 266, p. 166. https://doi.org/10.1016/j.jssc.2018.07.01919

    Article  Google Scholar 

  19. Colibaba, G.V., Avdonin, A., Shtepliuk, I., Caraman, M., et al., Effects of impurity band in heavily doped ZnO:HCl, Phys. B (Amsterdam), 2019, vol. 553, p. 174. https://doi.org/10.1016/j.physb.2018.10.031

    Article  Google Scholar 

  20. Colibaba, G.V., ZnO doping efficiency by multivalent metals in complex CVT reactions, Solid State Sci., 2019, vol. 97, p. 105944. https://doi.org/10.1016/j.solidstatesciences.2019.105944

    Article  Google Scholar 

  21. Colibaba, G.V., Sintering highly conductive ZnO:HCl ceramics by means of chemical vapor transport reactions. Ceram. Int., 2019, vol. 45, p. 15843. https://doi.org/10.1016/j.ceramint.2019.05.087

    Article  Google Scholar 

  22. Hëupkes, J., Mëuller, J., and Rech, B., Texture etched ZnO:Al for silicon thin film solar cells, in Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells, Ellmer, K., Klein, A., and Rech, B., Eds., New York: Springer-Verlag, 2008. https://doi.org/10.1007/978-3-540-73612-7

    Book  Google Scholar 

  23. Han, S.-Ch., Kim, J.-K., Kim, J.Y., Kim, K.-K., et al., Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching, J. Electrochem. Soc., 2010, vol. 157, p. D60. https://doi.org/10.1149/1.3253564

    Article  Google Scholar 

  24. Mehta, M. and Meier, C., Controlled etching behavior of O-polar and Zn-polar ZnO single crystals, J. Electrochem. Soc., 2011, vol. 158, p. H119. https://doi.org/10.1149/1.3519999

    Article  Google Scholar 

  25. Chichibu, S.F., Sota, T., Cantwell, G., Eason, D.B., et al., Polarized photoreflectance spectra of excitonic polaritons in ZnO single crystal, J. Appl. Phys., 2003, vol. 93, p. 756. https://doi.org/10.1063/1.1527707

    Article  Google Scholar 

  26. Jung, S.W., Park, W.I., Cheong, H.D., Yi, G.-Ch., et al., Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3 (0001) by metalorganic vapor phase epitaxy, Appl. Phys. Lett., 2002, vol. 80, p. 1924. https://doi.org/10.1063/1.1461051

    Article  Google Scholar 

  27. Zhang, B.P., Binh, N.T., Segawa, Y., Wakatsuki, K., et al., Optical properties of ZnO rods formed by metalorganic chemical vapor deposition, Appl. Phys. Lett., 2003, vol. 83, p. 1635. https://doi.org/10.1063/1.1605803

    Article  Google Scholar 

  28. Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., et al., Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett., 2002, vol. 81, p. 1830. https://doi.org/10.1063/1.1504875

    Article  Google Scholar 

  29. Ko, H.J., Chen, Y.F., Yao, T., Miyajima, K., et al., Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett., 2000, vol. 77, p. 537. https://doi.org/10.1063/1.127036

    Article  Google Scholar 

  30. Yamamoto, I., Miyajima, E., Goto, T., Ko, H.J., et al., Biexciton luminescence in high-quality ZnO epitaxial thin films, J. Appl. Phys., 2001, vol. 90, p. 4973. https://doi.org/10.1063/1.1407852

    Article  Google Scholar 

  31. Chen, Y., Bagnall, D.M., Zhu, Z., Sekiuchi, T., et al., Growth of ZnO single crystal thin films on c-plane (0001) sapphire by plasma enhanced molecular beam epitaxy, J. Cryst. Growth, 1997, vol. 181, p. 165. https://doi.org/10.1016/S0022-0248(97)00286-8

    Article  Google Scholar 

  32. Bagnall, D.M., Chen, Y.F., Shen, M.Y., Zhu, Z., et al., Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE, J. Cryst. Growth, 1998, vols. 184–185, p. 605. https://doi.org/S0022-0248(98)80127-9

  33. Zhang, X.T., Liu, Y.C., Zhi, Z.Z., Zhang, J.Y., et al., Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films, J. Phys. D: Appl. Phys., 2001, vol. 34, p. 3430. https://doi.org/10.1088/0022-3727/34/24/302

    Article  Google Scholar 

  34. Tchelidze, T., Chikoidze, E., Gorochov, O., and Galtier, P., Perspectives of chlorine doping of ZnO, Thin Solid Films, 2007, vol. 515, p. 8744. https://doi.org/10.1016/j.tsf.2007.04.003

    Article  Google Scholar 

  35. Tian, J.-L., Zhang, H.-Y., Wang, G.-G., Wang, X.-Zh., et al., Influence of film thickness and annealing temperature on the structural and optical properties of ZnO thin films on Si (100) substrates grown by atomic layer deposition, Superlattices Microstruct., 2015, vol. 83, p. 719. https://doi.org/10.1016/j.spmi.2015.03.062

    Article  Google Scholar 

  36. Janotti, A. and de Walle, C.G.V., Absolute deformation potentials and band alignment of wurtzite ZnO, MgO, and CdO, Phys. Rev. B, 2007, vol. 75, art. ID 121201(R). https://doi.org/10.1103/PhysRevB.75.12120137

  37. Janotti, A. and de Walle, C.G.V., Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 2009, vol. 72, p. 126501. https://doi.org/10.1088/0034-4885/72/12/126501

    Article  Google Scholar 

  38. Shalish, I., Temkin, H., and Narayanamurti, V., Size-dependent surface luminescence in ZnO nanowires, Phys. Rev. B, 2004, vol. 69, p. 245401. .https://doi.org/10.1103/PhysRevB.69

    Article  Google Scholar 

  39. Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., and Gauvin, R., CASINO V2.42: A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users, Scanning, 2007, vol. 29, p. 92. https://doi.org/10.1002/sca.20000

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Victor Zalamai and Eduard Monaico express their thanks to the Alexander von Humboldt Foundation for support.

Author information

Authors and Affiliations

Authors

Contributions

V. Zalamai, Ed. Monaico and G. Colibaba designed the experiments; G. Colibaba synthesized the samples. Ed. Monaico and El. Monaico performed electrochemical etching and surface morphology characterization. V. Zalamai carried out photoluminescence measurements. V. Zalamai, Ed. Monaico and G. Colibaba contributed to manuscript preparation. All authors participated in the discussions. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to V. V. Zalamai or E. V. Monaico.

Ethics declarations

The authors acknowledge financial support from the National Agency for Research and Development, Moldova, under State Programme Project nos. 20.80009.5007.20 and 20.80009.5007.16.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalamai, V.V., Colibaba, G.V., Monaico, E.I. et al. Enhanced Emission Properties of Anodized Polar ZnO Crystals. Surf. Engin. Appl.Electrochem. 57, 117–123 (2021). https://doi.org/10.3103/S1068375521010166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521010166

Keywords:

Navigation