Skip to main content
Log in

Decontamination of Diatom Algae Cultures Contaminated with the Kinetoplastid Bodo saltans Ehrenberg, 1832

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract—

Cultivation of diatom algae is associated with many problems, one of which concerns the contamination of cultures with various microorganisms. A representative of kinetoplastids, the free-living bacteriotroph Bodo saltans Ehrenberg, 1832, can often be found among contaminants. In the case when B. saltans reaches a high abundance, diatom cells cease to divide, some of them die, becoming a substrate for the development of bacteria, and then the substrate for the next trophic link: kinetoplastids. For the decontamination of diatom cultures, we used amphotericin B, a polyene macrocyclic antibiotic active against some protozoa and fungi. The effect of the drug on B. saltans in cultures of eight species of diatoms, including Ardissonea crystallina (C. Agardh) Grunow, Climaconeis scalaris (Brébisson) E.J. Cox, Entomoneis paludosa (W. Smith) Reimer, Haslea karadagensis Davidovich, Gastineau & Mouget, Pleurosigma aestuarii (Brébisson ex Kützing) W. Smith, Pleurosigma sp., Pseudo-nitzschia calliantha Lundholm, Moestrup & Hasle, and P. pungens (Grunow ex P.T. Cleve) Hasle, was investigated. The rate of division of diatom cells exposed to amphotericin B, depending on the dose and duration of exposure, was experimentally determined. Recommendations on the use of amphotericin B for the decontamination of diatom cultures from B. saltans are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mann, D.G., Size and sex, in The Diatom World. Cellular Origin, Life in Extreme Habitats, and Astrobiology, Seckbach, J. and Kociolek, J.P., Eds., Dordrecht: Springer, 2011, vol. 19, pp. 145–166.

    Google Scholar 

  2. Round, F.E., Crawford, R.M., and Mann, D.G., The Diatoms. Biology and Morphology of the Genera, Cambridge: Cambridge Univ. Press, 1990.

    Google Scholar 

  3. Geitler, L., Reproduction and life history in diatoms, Bot. Rev., 1935, vol. 1, no. 5, pp. 149–161.

    Article  Google Scholar 

  4. Polyakova, S.L., Davidovich, O.I., Podunai, Yu.A., and Davidovich, N.A., Modification of the ESAW environment used for the cultivation of marine diatoms, Morsk. Biol. Zh., 2018, vol. 3, no. 2, pp. 73–78.

    Google Scholar 

  5. Andersen, R.A., Berges, J.A., Harrison, P.J., and Watanabe, M.M., Recipes for freshwater and seawater media, in Algal Culturing Techniques, Andersen, R.A., Ed., New York: Elsevier Academic Press, 2005, pp. 429–538.

    Google Scholar 

  6. Gastineau, R., Lemieux, C., Turmel, M., Davidovich, N.A., Davidovich, O.I., Jean-Luc Mouget, J.-L., and Witkowski, A., Mitogenome sequence of a Black Sea isolate of the kinetoplastid Bodo saltans, Mitochondrial DNA Part B, 2018, vol. 3, no. 2, pp. 970–971.

    Article  Google Scholar 

  7. Scheckenbach, F., Wylezich, C., Mylnikov, A.P., Weitere, M., and Arndt, H., Molecular comparisons of freshwater and marine isolates of the same morphospecies of heterotrophic flagellates, Appl. Environ. Microbiol., 2006, vol. 72, no. 10, pp. 6638–6643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wood, A.M., Everroad, R.C., and Wingard, L.M., Measuring growth rates in microalgal cultures, in Algal Culturing Techniques, Andersen, R.A., Ed., New York: Elsevier Academic Press, 2005, pp. 269–286.

    Google Scholar 

  9. Glantz, S.A., Primer of Biostatistics, New York: McGraw-Hill, Health Professions Division, 1997.

    Google Scholar 

  10. Droop, S.J.M., A procedure for routine purification of algal cultures with antibiotics, Br. Phycol. Bull., 1967, vol. 3, no. 2, pp. 295–297.

    Article  Google Scholar 

  11. Guillard, R.R.L., Purification methods for microalgae, in Algal Culturing Techniques, Andersen, R.A., Ed., New York: Elsevier Academic Press, 2005, pp. 117–132.

    Google Scholar 

  12. Mitchell, G.C., Baker, J.H., and Sleigh, M.A., Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria, J. Eukar. Microbiol., 1988, vol. 35, no. 2, pp. 219–222.

    Google Scholar 

  13. Zhukov, B.F., Atlas presnovodnykh geterotrofnykh zhgutikonostsev (biologiya, ekologiya, sistematika) (Atlas of Freshwater Heterotrophic Flagellates (Biology, Ecology, and Taxonomy)), Rybinsk: Ryb. Dom pechati, 1993.

  14. Arndt, H., Dietrich, D., Auer, B., Cleven, E.-J., Gräfenhan, T., Weitere, M., and Mylnikov, A.P., Functional diversity of heterotrophic flagellates in aquatic ecosystems, in The Flagellates: Unity, Diversity and Evolution, Leadbeater, B.S.C. and Green, J.C., Eds., London: Taylor and Francis, 2000, vol. 59, pp. 240–268.

    Google Scholar 

  15. von der Heyden, S. and Cavalier-Smith, T., Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, no. 6, pp. 2605–2621.

    Article  CAS  PubMed  Google Scholar 

  16. Vickerman, K., Appleton, P.L., Clarke, K.J., and Moreira, D., Aurigamonas solis n. gen., n. sp., a soil-dwelling predator with unusual helioflagellate organisation and belonging to a novel clade within the Cercozoa, Protist, 2005, vol. 156, no. 3, pp. 335–354.

    Article  PubMed  Google Scholar 

  17. Yazaki, E., Ishikawa, S.A., Kume, K., Kumagai, A., Kamaishi, T., Tanifuji, G., Hashimoto, T., and Inagaki, Y., Global Kinetoplastea phylogeny inferred from a large-scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle, Genes Genet. Syst., 2017, vol. 92, no. 1, pp. 35–42.

    Article  PubMed  Google Scholar 

  18. Deeg, C.M., Chow, C.-E.T., and Suttle, C.A., The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea, eLife, 2018, vol. 7.

Download references

Funding

The study was carried out within the framework of the state target on the topic “Study of the Fundamental Physical, Physiological, Biochemical, Reproductive, Population, and Behavioral Characteristics of Marine Hydrobionts,” state registration number no. АААА-А19-119012490045-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Davidovich.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Mittova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, N.A., Davidovich, O.I., Podunay, Y.A. et al. Decontamination of Diatom Algae Cultures Contaminated with the Kinetoplastid Bodo saltans Ehrenberg, 1832. Moscow Univ. Biol.Sci. Bull. 74, 63–68 (2019). https://doi.org/10.3103/S0096392519020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392519020032

Keywords:

Navigation