Skip to main content
Log in

Morphological and photosynthetic acclimation of Potamogeton perfoliatus to different environments in Lake Balaton

  • Original Research Paper
  • Published:
Oceanological and Hydrobiological Studies

Abstract

Comparative significance and synchronicity of morphological and photosynthetic adjustments of Potamogeton perfoliatus to shore-specific environments were examined on plants growing at the maximum depth of colonisation of the northern and southern shores of Lake Balaton. The shore-specific environments did not affect photophysiological parameters: the photosynthesis of plants on both shores was high, coupled with low respiration and compensation irradiances. In contrast, morphological and habitual differences between the shores were significant: plants of the shady, northern shore had lighter, but larger leaves, and longer internodes concentrated in the apex of the plants. Thus, photophysiological variability of Potamogeton does not follow its morphological differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernethy V.J., Sabbatini M.R., Murphy K.J. 1996. Response of Elodea canadensis Michx, and Myriophyllum spicatum L. to shade, cutting and competition in experimental culture. Hydrobiologia, 340, 219–224.

    Article  Google Scholar 

  • Asaeda, T., Sultana M., Manatunge J., Fujino T., 2004, The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environ. Exp. Bot., 52, 225–238.

    Article  Google Scholar 

  • Baier T., Neuwirth E., 2007, Excel:: COM:: R. Computation. Stat., 22, 91–108.

    Article  Google Scholar 

  • Barko J., Hardin D.G., Matthews M.S., 1982, Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Can. J. Bot., 60, 877–887.

    Article  Google Scholar 

  • Bassow S.L., Bazzaz F.A., 1997, Intra-and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia, 109, 507–515.

    Article  Google Scholar 

  • Bowes G., Salvucci M.E., 1989, Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat. Bot., 34, 233–266.

    Article  Google Scholar 

  • Caffrey J.M., Kemp W.M., 1991, Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina L. Aquat. Bot., 40, 109–128.

    Article  Google Scholar 

  • Doyle, R.D., Grodowitz M., Michael Smart R., Owens C., 2002, Impact of herbivory by Hydrellia pakistanae (Diptera: Ephydridae) on growth and photosynthetic potential of Hydrilla verticillata. Biocontrol, 24, 221–229.

    Google Scholar 

  • Duarte C.M., 1991, Seagrass depth limits. Aquat. Bot., 40, 363–377.

    Article  Google Scholar 

  • Eriksson B.K., Sandström A., Isaeus M., Schreiber H., Karas P., 2004, Effects of boating activities on aquatic vegetation in the Stockholm archipelago, Baltic Sea. Estuar. Coast. Shelf Sci. 61, 339–349.

    Article  Google Scholar 

  • Goldsborough W.J., Kemp W.M., 1988, Light Responses of a Submersed Macrophyte: Implications for Survival in Turbid Tidal Waters. Ecology, 69, 1775–1786.

    Article  Google Scholar 

  • Gutschick V., 1999, Biotic and abiotic consequences of differences in leaf structure. New Phytol., 143, 3–18.

    Article  Google Scholar 

  • Harley M.T., Findlay S., 1994, Photosynthesis-irradiance relationships for three species of submersed macrophytes in the tidal freshwater Hudson River. Estuar. Coasts., 17, 200–205.

    Article  Google Scholar 

  • Krause-Jensen D., Sand-Jensen K., 1998, Light attenuation and photosynthesis of aquatic plant communities. Limnol. Oceanogr., 43, 396–407.

    Article  Google Scholar 

  • Larcher W., 2003, Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Verlag.

  • Madsen J.D., Hartleb C.F., Boylen C.W., 1991, Photosynthetic characteristics of Myriophyllum spicatum and six submersed aquatic macrophyte species native to Lake George, New York. Freshwater Biol., 26, 233–240.

    Article  Google Scholar 

  • Madsen J.D., Adams M.S., 1989, The light and temperature dependence of photosynthesis and respiration in Potamogeton pectinatus L. Aquat. Bot., 36, 23–31.

    Article  Google Scholar 

  • Markager S., Sand-Jensen K., 1994, The physiology and ecology of light-growth relationship in macroalgae. Phycol. Res., 10, 209–209.

    Google Scholar 

  • Pilon J., Santamaría L., 2001, Seasonal acclimation in the photosynthetic and respiratory temperature responses of three submerged freshwater macrophyte species. New Phytol., 151, 659–670.

    Article  Google Scholar 

  • Pilon J., Santamaría L., 2002, Clonal variation in morphological and physiological responses to irradiance and photoperiod for the aquatic angiosperm Potamogeton pectinatus. J. Ecol., 90, 859–870.

    Article  Google Scholar 

  • Platt T., Gallegos C.L., Harrison W.G., 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38, 687–701.

    Google Scholar 

  • Rae R., Hanelt D., Hawes I., 2001, Sensitivity of freshwater macrophytes to UV radiation. Mar. Freshwater Res., 52, 1023–1032.

    Article  Google Scholar 

  • Sabbatini M.R., Murphy K.J., 1996, Response of Callitriche and Potamogeton to cutting, dredging and shade in English drainage channels. J. Aquat. Plant Manag., 34, 8–12.

    Google Scholar 

  • Santamaría L., 2002, Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol., 23, 137–154.

    Article  Google Scholar 

  • Santamaría L., van Vierssen W., 1997, Photosynthetic temperature responses of fresh-and brackish-water macrophytes: a review. Aquat. Bot., 58, 135–150.

    Article  Google Scholar 

  • Torres Boeger M.R.T., Poulson M.E., 2003, Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L.(Scrophulariaceae) under different flow regimes. Aquat. Bot., 75, 123–135.

    Article  Google Scholar 

  • Tóth V.R., Herodek S., 2008, Seasonality of photosynthesis of Potamogeton perfoliatus in Lake Balaton. Hidrol. Kozl., 88, 215–218. (in Hungarian with Engl. summ.)

    Google Scholar 

  • Tóth V.R., Herodek. S., 2009, A simple incubation tank for photosynthesis measurements with six light intensities. Ann. Limnol.-Int. J. Lim., 45, 195–202.

    Article  Google Scholar 

  • Tyler A.N., Sváb E., Preston T., Présing M., Kovács W.A., 2006, Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high suspended sediment. Int. J. Remote Sens., 27, 1521–1537.

    Article  Google Scholar 

  • Vári, Á., Tóth, V. R., & Csontos, P., 2010, Comparing the morphology of Potamogeton perfoliatus L. along environmental gradients in Lake Balaton (Hungary). Ann. Limnol-Int. J. Lim., 46, 111–119.

    Article  Google Scholar 

  • Wells C.L., Pigliucci M., 2000, Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspect. Plant Ecol., 3, 1–18.

    Article  Google Scholar 

  • Wolfer S.R., van Nes E.H., Straile D., 2006, Modelling the clonal growth of the rhizomatous macrophyte Potamogeton perfoliatus. Ecological Modelling., 192, 67–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor R. Tóth.

About this article

Cite this article

Tóth, V.R., Vári, Á. & Lugossi, S. Morphological and photosynthetic acclimation of Potamogeton perfoliatus to different environments in Lake Balaton. Ocean and Hydro 40, 43–51 (2011). https://doi.org/10.2478/s13545-011-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13545-011-0028-1

Key words

Navigation