Skip to main content
Log in

Fractional relaxation with time-varying coefficient

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

From the point of view of the general theory of the hyper-Bessel operators, we consider a particular operator that is suitable to generalize the standard process of relaxation by taking into account both memory effects of power law type and time variability of the characteristic coefficient. According to our analysis, the solutions are still expressed in terms of functions of the Mittag-Leffler type as in case of fractional relaxation with constant coefficient but exhibit a further stretching in the time argument due to the presence of Erdélyi-Kober fractional integrals in our operator. We present solutions, both singular and regular in the time origin, that are locally integrable and completely monotone functions in order to be consistent with the physical phenomena described by non-negative relaxation spectral distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ali, V. Kiryakova, S. Kalla, Solutions of fractional multi-order integral and differential equations using a Poisson-type transform. J. Math. Anal. and Appl. 269, No 1 (2002), 172–199; DOI:10.1016/S0022-247X(02)00012-4.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Beghin, Fractional relaxation equations and Brownian crossing probabilities of a random boundary. Advances in Applied Probability 44 (2012), 479–505.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Capelas de Oliveira, F. Mainardi, J. Vaz Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. J. Eur. Phys.-Special Topics 193, No 1 (2011), 161–171. Revised version in E-print arXiv:1106.1761.

    Article  Google Scholar 

  4. I. Dimovski, On an operational calculus for a differential operator. Compt. Rendues de l’Acad. Bulg. des Sci. 21, No 6 (1966), 513–516.

    MathSciNet  Google Scholar 

  5. I. Dimovski, V. Kiryakova, Transmutations, convolutions and fractional powers of Bessel-type operators via Meijer’s G-function. In: Proc. Intern. Conf. ”Complex Analysis and Applications, Varna’ 1983”, Bulg. Acad. Sci., Sofia, 45–66.

  6. V.A. Ditkin, A.P. Prudnikov, On the theory of operational calculus, generated by the Bessel equation. Zhournal Vych. Mat. i Mat. Fiziki 3, No 2 (1963), 223–238 (In Russian).

    MathSciNet  Google Scholar 

  7. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation. Springer Verlag, Berlin (1974).

    Book  MATH  Google Scholar 

  8. R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Editors), Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien (1997), 223–276. [E-print: arXiv:0805.3823].

    Chapter  Google Scholar 

  9. F. Jarad, R. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives. Advances in Difference Equations 2012 (2012), 1–8.

    Article  Google Scholar 

  10. V. Kiryakova, An application of Meijer’s G-function to Bessel type operators. In: Proc. Internat. Conf. “Constr. Function Theory, Varna 1981”, Bulg. Acad. Sci., Sofia, 457–462.

  11. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman — J. Wiley, Harlow — N. York (1994).

    MATH  Google Scholar 

  12. V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Mathematics 118 (2000), 241–259; DOI:10.1016/S0377-0427(00)00292-2.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Kiryakova, Yu. Luchko, Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Central European J. of Physics 11, No 10 (2013), 1314–1336; DOI:10.2478/s11534-013-0217-1.

    Article  Google Scholar 

  14. A.A. Kilbas and A.A. Titioura, Nonlinear differential equations with Marchaud-Hadamard-type fractional derivative in the weighted space of summable functions. Mathematical Modelling and Analysis 12, No 3 (2007), 343–356.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Lamb, Fractional Powers of Operators on Fréchet Spaces with Applications. Ph.D. Thesis, University of Strathclyde, Glasgow, 1980.

    Google Scholar 

  16. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press — World Sci., London — Singapore (2010).

    Book  MATH  Google Scholar 

  17. A.C. McBride, Fractional Calculus and Integral Transforms of Generalised Functions. Pitman, London (1979).

    Google Scholar 

  18. A.C. McBride, A theory of fractional integration for generalized functions. SIAM J. on Mathematical Analysis 6, No 3 (1975), 583–599.

    Article  MATH  MathSciNet  Google Scholar 

  19. A.C. McBride, Fractional powers of a class of ordinary differential operators. Proc. London Mathematical Society (3) 45 (1982), 519–546.

    Article  MATH  MathSciNet  Google Scholar 

  20. K.S. Miller and S.G. Samko, A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Anal. Exchange 23 (1997), 753–755.

    MathSciNet  Google Scholar 

  21. K.S. Miller and S.G. Samko, Completely monotonic functions. Integral Transforms and Special Functions 12 (2001), 389–402.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Pollard, The completely monotonic character of the Mittag-Leffler function E α(−x). Bull. Amer. Math. Soc. 54 (1948), 1115–1116.

    Article  MATH  MathSciNet  Google Scholar 

  23. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science, Yverdon (1993).

    MATH  Google Scholar 

  24. W.R. Schneider, Completely monotone generalized Mittag-Leffler functions. Expositiones Mathematicae 14 (1996), 3–16.

    MATH  MathSciNet  Google Scholar 

  25. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals. Oxford University Press, Oxford (1937).

    Google Scholar 

  26. D.V. Widder, The Laplace Transform. Princeton University Press, Princeton (1946).

    Google Scholar 

  27. S. Yakubovich, Yu. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions. Ser.: Mathematics and Its Applications 287, Kluwer Acad. Publ., Dordrecht-Boston-London (1994).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Garra.

About this article

Cite this article

Garra, R., Giusti, A., Mainardi, F. et al. Fractional relaxation with time-varying coefficient. fcaa 17, 424–439 (2014). https://doi.org/10.2478/s13540-014-0178-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0178-0

MSC 2010

Key Words and Phrases

Navigation