Skip to main content
Log in

Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: Constraints from volcanic facies analysis

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

his study presents the first and detail field investigations of exposed deposits at proximal sections of the Barombi Mbo Maar (BMM), NE Mt Cameroon, with the aim of documenting its past activity, providing insight on the stratigraphic distribution, depositional process, and evolution of the eruptive sequences during its formation. Field evidence reveals that the BMM deposit is about 126m thick, of which about 20m is buried lowermost under the lake level and covered by vegetation. Based on variation in pyroclastic facies within the deposit, it can be divided into three main stratigraphic units: U1, U2 and U3. Interpretation of these features indicates that U1 consists of alternating lapilli-ash-lapilli beds series, in which fallout derived individual lapilli-rich beds are demarcated by surges deposits made up of thin, fine-grained and consolidated ash-beds that are well-defined, well-sorted and laterally continuous in outcrop scale. U2, a pyroclastic fall-derived unit, shows crudely lenticular stratified scoriaceous layers, in which many fluidal and spindle bombs-rich lapilli-beds are separated by very thin, coarse-vesiculatedash-beds, overlain by a mantle xenolith- and accidental lithic-rich explosive breccia, and massive lapilli tuff and lapillistone. U3 displays a series of surges and pyroclastic fall layers. Emplacement processes were largely controlled by fallout deposition and turbulent diluted pyroclastic density currents under “dry” and “wet” conditions. The eruptive activity evolved in a series of initial phreatic eruptions, which gradually became phreatomagmatic, followed by a phreato-Strombolian and a violent phreatomagmatic fragmentation. A relatively long-time break, demonstrated by a paleosol between U2 and U3, would have permitted the feeding of the root zone or the prominent crater by the water that sustained the next eruptive episode, dominated by subsequent phreatomagmatic eruptions. These preliminary results require complementary studies, such as geochemistry, for a better understanding of the changes in the eruptive styles, and to develop more constraints on the maar’s polygenetic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wohletz K.H., Shéridan M. F., Hydrovolcanic explosion II: Evolution of tuffs rings and tuff cones. Am. J. Sci., 1983, 283, 385–413

    Article  Google Scholar 

  2. Lorenz V., On the formation of Maars. Bull. Volcanol., 1973, 37, 183–204

    Article  Google Scholar 

  3. Lorenz V., Formation of phreatomagmatic maardiatreme volcanoes and its relevance to kimberlite diatremes. Phys. Chem. Earth., 1975, 9, 17–27

    Article  Google Scholar 

  4. Lorenz V., Maars and Diatremes of phreatomagmatic origin: A Review. Trans. Geol. Soc. S.Afr., 1985, 88, 459–470

    Google Scholar 

  5. Lorenz V., Maar-Diatreme Volcanoes, their Formation, and their Setting in Hard-rock or Soft-rock Environments. GeoLines, 2003, 15, 72–83

    Google Scholar 

  6. White J.D.L., Ross P.-S., Maar-diatreme volcanoes: A review. J. Volcanol. Geotherm. Res., 2011, 201, 1–29

    Article  Google Scholar 

  7. Lorenz V., Syn- and post-eruptive hazards of maardiatreme volcanoes. J. Volcanol. Geotherm. Res., 2007, 159, 285–312

    Article  Google Scholar 

  8. Cas R.A.F., Wright J. V., Volcanic successions: modern and ancient. Allen & Unwin, London, 1987.

    Book  Google Scholar 

  9. Valentine G.A., Stratified flow in pyroclastic surges. Bull. Volcanol., 1987, 49, 616–630

    Article  Google Scholar 

  10. Sohn Y.K., Chough S.K., Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentol., 1989, 36, 837–855

    Article  Google Scholar 

  11. Chough S.K., Sohn Y.K., Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentol., 1990, 37, 1115–1135

    Article  Google Scholar 

  12. Valentine G.A., Giannetti B., Single pyroclastic beds deposited by simultaneous fallout and surge processes: Roccamonfina volcano, Italy. J. Volcanol. Geotherm. Res., 1995, 64, 129–137

    Article  Google Scholar 

  13. White J.D.L., Schmincke H.-U., Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma canary Islands. J. Volcanol. Geotherm. Res., 1999, 94, 283–304

    Article  Google Scholar 

  14. Dellino P., La Volpe L., Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano aeolian Islands, Italy). J. Volcanol. Geotherm. Res., 2000, 96, 57–78

    Article  Google Scholar 

  15. Németh K., Martin U., Harangi Sz., Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J. Volcanol. Geotherm. Res., 2001, 111, 111–135

    Article  Google Scholar 

  16. Németh K., White J.D.L., Reconstructing eruption processes of a Miocene monogenetic volcanic field from vent remnants: Waipiata Volcanic Field, South Island, New Zealand. J. Volcanol. Geotherm. Res., 2003, 124, 1–24

    Article  Google Scholar 

  17. Németh K., Martin U., Practical volcanology-lectures notes for understanding volcanic rocks from field based studies. László Kordos, Budapest, 2007

    Google Scholar 

  18. Sulpizio R., Mele D., Dellino P., La Volpe L., Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Sedimentol., 2007, 54, 607–635

    Article  Google Scholar 

  19. Brand B.D., Clarke A.B., Semken S., Eruptive conditions and depositional processes of Narbona Pass Maar volcano, Navajo volcanic field, Navajo Nation, New Mexico (USA). Bull. Volcanol., 2009, 71, 49–77

    Article  Google Scholar 

  20. Ngwa C.N., Suh C.E., Devey C.W., Phreatomagmatic deposits and stratigraphic reconstruction at Debunscha Maar (Mt Cameroon volcano). J. Volcanol. Geotherm. Res., 2010, 192, 201–211

    Article  Google Scholar 

  21. Murtagh R.M., White J.D.L., Sohn Y.K., Pyroclast textures of the Ilchulbong’wet’ tuff cone, Jeju Island, South Korea. J. Volcanol. Geotherm. Res., 2011, 201, 385–396

    Article  Google Scholar 

  22. Gernon T.M., Upton B.G.J., Hincks T.K., Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland. Bull. Volcanol., 2013, 75, 1–20

    Article  Google Scholar 

  23. Houghton B.F., Hackett W.R., Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, New Zealand: a complex interaction between external water and rising basaltic magma. J. Volcanol. Geotherm. Res., 1984, 21, 207–231

    Article  Google Scholar 

  24. Martin U., Németh K., How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcán Ceboruco, (Mexico) and Al Haruj (Libya), J. Volcanol. Geotherm. Res., 155, 2006, 104–118

    Article  Google Scholar 

  25. Kokelaar P., Magma-water interaction in sub aqueous and emergent basaltic volcanism. Bull. Volcanol., 1986, 48, 275–289

    Article  Google Scholar 

  26. Wohletz K.H., Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies. Bull. Volcanol., 1986, 48, 245–264

    Article  Google Scholar 

  27. Wohletz K.H., Zimanowski B., Physics of phreatomagmatism. Terra Nostra, 2000, 6, 515–523

    Google Scholar 

  28. Sheridan M.F., Wohletz K.H., Hydrovolcanic explosions: the systematics of water-pyroclast equilibration, Sciences., 1981, 212, 1387–1389

    Article  Google Scholar 

  29. McPhie J., Walker G.P.L., Christiansen R.L., Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 A.D.: Keanakakoi Ash Member. Bull. Volcanol., 1990, 52, 334–354

    Article  Google Scholar 

  30. Giordano G., Facies characteristics and magma-water interaction of the White Trachytic Tuffs (Roccamonfina Volcano, southern Italy). Bull. Volcanol., 1998, 60, 10–26

    Article  Google Scholar 

  31. Németh K., Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. Geol. Soc. Am., 2010, 470, 43–66

    Google Scholar 

  32. Sato H., Aramaki S., Kusakabe M., Hirabayashi J.-I., Sano Y., Nojiri Y., Tchoua F., Geochemical difference of basalts between polygenetic and monogenetic volcanoes in the central part of the Cameroon volcanic line. Geochem. J., 1990, 24, 357–370

    Article  Google Scholar 

  33. Kling G.W., Comparative limnology of lakes in Cameroon, West Africa. PhD thesis, Duke University, 1987

    Google Scholar 

  34. Tamen J., Nkoumbou C., Mouafo L., Reusser E., Tchoua F.M., Petrology and geochemistry of monogenetic volcanoes of the Barombi Koto volcanic ?eld (Kumba Graben, Cameroon volcanic line): Implications for mantle source characteristics. C. R. Géosci., 2007, 339, 799–809

    Article  Google Scholar 

  35. Cornen G., Bandet Y., Giresse P., Maley J., The nature and chronostratigraphy of Quaternary pyroclastic accumulations from Lake Barombi-Mbo (West Cameroon). J. Volcanol. Geotherm. Res., 1992, 51, 357–374

    Article  Google Scholar 

  36. Dumort J.-C., Geologic map and explicative note on the Douala-west and 1/500000 map of geologic recognisance. Dir. Min. Géol. Cam. BRGM Paris, 1968. (In French)

    Google Scholar 

  37. Teitchou M.I., Grégroire M., Dantas C., Tchoua F.M., High mantle beneath the Kumba plain Cameroon line), after spinel peridotite xenolith in basaltic lava. C. R. Géosci., 2007, 33, 101–109. (In French)

    Article  Google Scholar 

  38. Valentine G.A., Perry F.V., WoldeGabriel G., Field characteristics of deposits from spatter-rich pyroclastic density currents at Summer Coon volcano, Colorado. J. Volcanol. Geotherm. Res., 2000, 104, 187–199

    Article  Google Scholar 

  39. Gillespie M.R., Styles M.T., Classification of igneous rocks: BGS Rock Classification Scheme, Vol. 1. B.G.S. R.R, 1999, 2.

    Google Scholar 

  40. White J.D.L., Houghton B.F., Primary volcaniclastic rocks. Geol., 2006, 34, 677–680

    Article  Google Scholar 

  41. Kokelaar P., Raine P., Branney M.J., Incursion of a large-volume, spatter-bearing pyroclastic density current into a caldera lake: Pavey Ark ignimbrite, Scafell caldera, England. Bull. Volcanol., 2007, 70, 23–54

    Article  Google Scholar 

  42. Befus K.S., Hanson R.E., Lehman T.M., Griffin W.R., Cretaceous basaltic phreatomagmatic volcanism in west Texas: Maar complex at Pena Mountain, Big Bend National park. J. Volcanol. Geotherm. Res., 2008, 173, 245–264

    Article  Google Scholar 

  43. Gençalioglu-Kuscu G., Atilla C., Cas R.A.F., Kuscu I., Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar). J. Volcanol. Geotherm. Res., 2007, 159, 198–209

    Article  Google Scholar 

  44. Stárková M., Rapprich V., Breitkreuz C., Variable eruptive styles in an ancient monogenetic volcanic field: examples from the Permian Levín Volcanic Field (Krkonoše Piedmont Basin, Bohemian Massif). J. Geosci., 2011, 56, 163–180

    Google Scholar 

  45. Martin U., Németh K., Auer A., Breitkreuz C., Mio-Pliocene Phreatomagmatic Volcanism in a Fluvio-Lacustrine Basin in Western Hungary, GeoLines, 2003, 15, 84–90

    Google Scholar 

  46. Németh K., Calculation of long-term erosion in Central Otago, New Zealand, based on erosional remnants of maar/tuff rings. Z. Geomorph. N. F., 2003, 47, 29–49

    Google Scholar 

  47. Auer A., Martin U., Németh K., The Fekete-Hegy Balaton Highland Hungary) “soft-Substrate” and “hardsubstrate” maar volcanoes in an aligned volcanic complex — Implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. J. Volcanol. Geotherm. Res., 2007, 159, 225–245

    Article  Google Scholar 

  48. Ross P.-S., Delpit S., Haller M.J., Németh K., Corbella H., Influence of the substrate on maar-diatreme volcanoes-An example of a mixed setting from the Pali Aike volcanic field, Argentina. J. Volcanol. Geotherm. Res., 2011, 201, 253–271

    Article  Google Scholar 

  49. Lucas Y., Chawel A., Soil formation in tropically weathered terrains. In: Butt C.R.M. and Zeegers H., (Ed.), Regolith Exploration Geochemistry in Tropical and Subtropical Terrains, Handbook of exploration Geochemistry vol.4, Elsevier, 1992.

    Google Scholar 

  50. Connor C.B., Conway F.M., Basaltic volcanic fields. In: Sigurdsson H., (Ed.), Encyclopedia of Volcanoes, Academic Press, 2000

    Google Scholar 

  51. Walker G.P.L., Basaltic volcanoes and volcanic systems. In: Sigurdsson H., (Ed.), Encyclopedia of Volcanoes, Academic Press, 2000

    Google Scholar 

  52. Németh K., An Overview of the Monogenetic Volcanic Fields of the Western Pannonian Basin: Their Field Characteristics and Outlook for Future Research from a Global Perspective, Updates in Volcanology — A comprehensive Approach to Volcanological Problem, Prof. Francesco Stoppa, ed.), InTech, 2012. http://www.intechopen.com/books/updates-in-volcanology-a-comprehensive-approach-to-volcanological-problems/an-overview-of-the-monogenetic-volcanic-fields-of-the-western-pannonian-basin-their-fields-characteristics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Chako Tchamabé.

About this article

Cite this article

Tchamabé, B.C., Youmen, D., Owona, S. et al. Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: Constraints from volcanic facies analysis. cent.eur.j.geo. 5, 480–496 (2013). https://doi.org/10.2478/s13533-012-0147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0147-2

Keywords

Navigation