Skip to main content
Log in

Neuroprotection by dietary restriction and the PPAR transcription complex

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Although the pathophysiology of neurodegenerative diseases is distinct for each disease, considerable evidence suggests that a single manipulation, dietary restriction, is strikingly protective against a wide range of such diseases. Thus pharmacological mimetics of dietary restrictions could prove widely protective across a range of neurodegenerative diseases. The PPAR transcription complex functions to re-program gene expression in response to nutritional deprivation as well as in response to a wide variety of lipophilic compounds. In mammals there are three PPAR homologs, which dimerize with RXR homologs and recruit coactivators Pgc1-alpha and Creb-binding protein (Cbp). PPARs are currently of clinical interest mainly because PPAR activators are approved for use in humans to reduce lipidemia and to improve glucose control in Type 2 diabetic patients. However, pharmacological enhancement of the activity of the PPAR complex is neuroprotective across a wide variety of models for neuropathological processes, including stroke, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Conversely activity of the PPAR transcriptional complex is reduced in a variety of neuropathological processes. The main mechanisms mediating the neuroprotective effects of the PPAR transcription complex appear to be re-routing metabolism away from glucose metabolism and toward alternative subtrates, and reduction in inflammatory processes. Recent evidence suggests that the PPAR transcriptional complex may also mediate protective effects of dietary restriction on neuropathological processes. Thus this complex represents one of the most promising for the development of pharmacological treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morrison J.H., Hof P.R., Life and death of neurons in the aging brain, Science, 1997, 278, 412–419

    Article  PubMed  CAS  Google Scholar 

  2. Olshansky S.J., Carnes B.A., Ever since Gompertz, Demography, 1997, 34, 1–15

    Article  PubMed  CAS  Google Scholar 

  3. Greer E.L., Brunet A., Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans, Aging Cell, 2009, 8, 113–127

    Article  PubMed  CAS  Google Scholar 

  4. Spindler S.R., Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction, Mech. Ageing Dev., 2005

  5. Anson R.M., Guo Z., de Cabo R., Iyun T., Rios M., Hagepanos A., et al., Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake, Proc. Natl. Acad. Sci. USA, 2003, 100, 6216–6220

    Article  PubMed  CAS  Google Scholar 

  6. Fontana L., Partridge L., Longo V.D., Extending healthy life span—from yeast to humans, Science, 2010, 328, 321–326

    Article  PubMed  CAS  Google Scholar 

  7. Schroeder J.E., Richardson J.C., Virley D.J., Dietary manipulation and caloric restriction in the development of mouse models relevant to neurological diseases, Biochim. Biophys. Acta, 2010, 1802, 840–846

    Article  PubMed  CAS  Google Scholar 

  8. Wang J., Ho L., Qin W., Rocher A.B., Seror I., Humala N., et al., Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease, Faseb J., 2005, 19, 659–661

    Article  PubMed  Google Scholar 

  9. Patel N.V., Gordon M.N., Connor K.E., Good R.A., Engelman R.W., Mason J., et al., Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models, Neurobiol. Aging, 2005, 26, 995–1000

    Article  PubMed  CAS  Google Scholar 

  10. Halagappa V.K., Guo Z., Pearson M., Matsuoka Y., Cutler R.G., Laferla F.M., et al., Intermittent fasting and caloric restriction ameliorate agerelated behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease, Neurobiol. Dis., 2007, 26, 212–220

    Article  PubMed  CAS  Google Scholar 

  11. Steinkraus K.A., Smith E.D., Davis C., Carr D., Pendergrass W.R., Sutphin G.L., et al., Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans, Aging Cell, 2008, 7, 394–404

    Article  PubMed  CAS  Google Scholar 

  12. Zhang M., Poplawski M., Yen K., Cheng H., Bloss E., Zhu X., et al., Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling, PLoS Biol., 2009, 7, e1000245

    Article  PubMed  Google Scholar 

  13. Qin W., Chachich M., Lane M., Roth G., Bryant M., de Cabo R., et al., Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus), J. Alzheimers Dis., 2006, 10, 417–422

    PubMed  CAS  Google Scholar 

  14. Bruce-Keller A.J., Umberger G., McFall R., Mattson M.P., Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults, Ann. Neurol., 1999, 45, 8–15

    Article  PubMed  CAS  Google Scholar 

  15. Duan W., Mattson M.P., Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease, J. Neurosci. Res., 1999, 57, 195–206

    Article  PubMed  CAS  Google Scholar 

  16. Holmer H.K., Keyghobadi M., Moore C., Menashe R.A., Meshul C.K., Dietary restriction affects striatal glutamate in the MPTP-induced mouse model of nigrostriatal degeneration, Synapse, 2005, 57, 100–112

    Article  PubMed  CAS  Google Scholar 

  17. Maswood N., Young J., Tilmont E., Zhang Z., Gash D.M., Gerhardt G.A., et al., Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease, Proc. Natl. Acad. Sci. USA, 2004, 101, 18171–18176

    Article  PubMed  CAS  Google Scholar 

  18. Duan W., Guo Z., Jiang H., Ware M., Li X.J., Mattson M.P., Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice, Proc. Natl. Acad. Sci. USA, 2003, 100, 2911–2916

    Article  PubMed  CAS  Google Scholar 

  19. Yu Z.F., Mattson M.P., Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism, J. Neurosci. Res., 1999, 57, 830–839

    Article  PubMed  CAS  Google Scholar 

  20. Manzanero S., Gelderblom M., Magnus T., Arumugam T.V., Calorie restriction and stroke, Exp. Transl. Stroke Med., 2011, 3, 8

    Article  PubMed  CAS  Google Scholar 

  21. Plunet W.T., Streijger F., Lam C.K., Lee J.H., Liu J., Tetzlaff W., Dietary restriction started after spinal cord injury improves functional recovery, Exp. Neurol., 2008, 213, 28–35

    Article  PubMed  Google Scholar 

  22. Ingram D.K., Weindruch R., Spangler E.L., Freeman J.R., Walford R.L., Dietary restriction benefits learning and motor performance of aged mice, J. Gerontol., 1987, 42, 78–81

    PubMed  CAS  Google Scholar 

  23. Markowska A.L., Savonenko A., Retardation of cognitive aging by lifelong diet restriction: implications for genetic variance, Neurobiol. Aging, 2002, 23, 75–86

    Article  PubMed  Google Scholar 

  24. Adams M.M., Shi L., Linville M.C., Forbes M.E., Long A.B., Bennett C., et al., Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability, Exp. Neurol., 2008, 211, 141–149

    Article  PubMed  CAS  Google Scholar 

  25. Carter C.S., Leeuwenburgh C., Daniels M., Foster T.C., Influence of calorie restriction on measures of age-related cognitive decline: role of increased physical activity, J. Gerontol. A Biol. Sci. Med. Sci., 2009, 64, 850–859

    Article  PubMed  Google Scholar 

  26. Johnstone A.M., Fasting — the ultimate diet?, Obes. Rev., 2007, 8, 211–222

    Article  PubMed  CAS  Google Scholar 

  27. Mobbs C.V., Hof P.R., Mechanisms of dietary restriction in aging and disease,Karger, Basel, 2007

  28. Caccamo A., Maldonado M.A., Bokov A.F., Majumder S., Oddo S., CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2010, 107, 22687–22692

    Article  PubMed  CAS  Google Scholar 

  29. Steffan J.S., Kazantsev A., Spasic-Boskovic O., Greenwald M., Zhu Y.Z., Gohler H., et al., The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription, Proc. Natl. Acad. Sci. USA, 2000, 97, 6763–6768

    Article  PubMed  CAS  Google Scholar 

  30. Cong S.Y., Pepers B.A., Evert B.O., Rubinsztein D.C., Roos R.A., van Ommen G.J., et al., Mutant huntingtin represses CBP, but not p300, by binding and protein degradation, Mol. Cell. Neurosci., 2005, 30, 560–571

    Article  PubMed  CAS  Google Scholar 

  31. Jiang H., Poirier M.A., Liang Y., Pei Z., Weiskittel C.E., Smith W.W., et al., Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin, Neurobiol. Dis., 2006, 23, 543–551

    Article  PubMed  CAS  Google Scholar 

  32. Kilgore M., Miller C.A., Fass D.M., Hennig K.M., Haggarty S.J., Sweatt J.D., et al., Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease, Neuropsychopharmacology, 2010, 35, 870–880

    Article  PubMed  CAS  Google Scholar 

  33. Govindarajan N., Agis-Balboa R.C., Walter J., Sananbenesi F., Fischer A., Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression, J. Alzheimers Dis., 2011, 26, 187–197

    PubMed  CAS  Google Scholar 

  34. Steffan J.S., Bodai L., Pallos J., Poelman M., McCampbell A., Apostol B.L., et al., Histone deacetylase inhibitors arrest polyglutaminedependent neurodegeneration in Drosophila, Nature, 2001, 413, 739–743

    Article  PubMed  CAS  Google Scholar 

  35. Bates E.A., Victor M., Jones A.K., Shi Y., Hart A.C., Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity, J. Neurosci., 2006, 26, 2830–2838

    Article  PubMed  CAS  Google Scholar 

  36. Jia H., Pallos J., Jacques V., Lau A., Tang B., Cooper A., et al., Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease, Neurobiol. Dis., 2012, 46, 351–361

    Article  PubMed  CAS  Google Scholar 

  37. Kidd S.K., Schneider J.S., Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease, Neuroscience, 2011, 194, 189–194

    Article  PubMed  CAS  Google Scholar 

  38. Langley B., Gensert J.M., Beal M.F., Ratan R.R., Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents, Curr. Drug Targets CNS Neurol. Disord., 2005, 4, 41–50

    Article  PubMed  CAS  Google Scholar 

  39. Mobbs C.V., Mastaitis J.W., Zhang M., Isoda F., Cheng H., Yen K., Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease, Interdiscip. Top. Gerontol., 2007, 35, 39–68

    PubMed  CAS  Google Scholar 

  40. Mobbs C.V., Yen K., Mastaitis J., Nguyen H., Watson E., Wurmbach E., et al., Mining microarrays for metabolic meaning: nutritional regulation of hypothalamic gene expression, Neurochem. Res., 2004, 29, 1093–1103

    Article  PubMed  CAS  Google Scholar 

  41. Poplawski M.M., Mastaitis J.W., Yang X.J., Mobbs C.V., Hypothalamic responses to fasting indicate metabolic reprogramming away from glycolysis toward lipid oxidation, Endocrinology, 2010, 151, 5206–5217

    Article  PubMed  CAS  Google Scholar 

  42. Poplawski M.M., Mastaitis J.W., Mobbs C.V., Naloxone, but not valsartan, preserves responses to hypoglycemia after antecedent hypoglycemia: role of metabolic reprogramming in counterregulatory failure, Diabetes, 2011, 60, 39–46

    Article  PubMed  CAS  Google Scholar 

  43. Diano S., Liu Z.W., Jeong J.K., Dietrich M.O., Ruan H.B., Kim E., et al., Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity, Nat. Med., 2011, 17, 1121–1127

    Article  PubMed  CAS  Google Scholar 

  44. Puigserver P., Adelmant G., Wu Z., Fan M., Xu J., O’Malley B., et al., Activation of PPARgamma coactivator-1 through transcription factor docking, Science, 1999, 286, 1368–1371

    Article  PubMed  CAS  Google Scholar 

  45. Frier B.C., Jacobs R.L., Wright D.C., Interactions between the consumption of a high-fat diet and fasting in the regulation of fatty acid oxidation enzyme gene expression: an evaluation of potential mechanisms, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300, R212–221

    Article  PubMed  CAS  Google Scholar 

  46. Rodriguez A.M., Sanchez J., Tobaruela A., Priego T., Pico C., Palou A., Time-course effects of increased fatty acid supply on the expression of genes involved in lipid/glucose metabolism in muscle cells, Cell. Physiol. Biochem., 2010, 25, 337–346

    Article  PubMed  CAS  Google Scholar 

  47. Wahli W., Michalik L., PPARs at the crossroads of lipid signaling and inflammation, Trends Endocrinol. Metab., 2012, 23, 351–363

    Article  PubMed  CAS  Google Scholar 

  48. Issemann I., Green S., Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators, Nature, 1990, 347, 645–650

    Article  PubMed  CAS  Google Scholar 

  49. Vega R.B., Huss J.M., Kelly D.P., The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes, Mol. Cell. Biol., 2000, 20, 1868–1876

    Article  PubMed  CAS  Google Scholar 

  50. Song S., Attia R.R., Connaughton S., Niesen M.I., Ness G.C., Elam M.B., et al., Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements, Mol. Cell. Endocrinol., 2010, 325, 54–63

    Article  PubMed  CAS  Google Scholar 

  51. Yang S.Y., He X.Y., Schulz H., Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase, J. Biol. Chem., 1987, 262, 13027–13032

    PubMed  CAS  Google Scholar 

  52. Speijer D., Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation, Bioessays, 2011, 33, 88–94

    Article  PubMed  CAS  Google Scholar 

  53. Auestad N., Korsak R.A., Morrow J.W., Edmond J., Fatty acid oxidation and ketogenesis by astrocytes in primary culture, J. Neurochem., 1991, 56, 1376–1386

    Article  PubMed  CAS  Google Scholar 

  54. Deplanque D., Gele P., Petrault O., Six I., Furman C., Bouly M., et al., Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment, J. Neurosci., 2003, 23, 6264–6271

    PubMed  CAS  Google Scholar 

  55. Inoue H., Jiang X.F., Katayama T., Osada S., Umesono K., Namura S., Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice, Neurosci. Lett., 2003, 352, 203–206

    Article  PubMed  CAS  Google Scholar 

  56. Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G., et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature, 2003, 425, 191–196

    Article  PubMed  CAS  Google Scholar 

  57. Collino M., Aragno M., Mastrocola R., Benetti E., Gallicchio M., Dianzani C., et al., Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643, Free Radic. Biol. Med., 2006, 41, 579–589

    Article  PubMed  CAS  Google Scholar 

  58. D’Agostino G., Russo R., Avagliano C., Cristiano C., Meli R., Calignano A., Palmitoylethanolamide protects against the amyloid-beta25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease, Neuropsychopharmacology, 2012, 37, 1784–1792

    Article  PubMed  Google Scholar 

  59. Bhateja D.K., Dhull D.K., Gill A., Sidhu A., Sharma S., Reddy B.V., et al., Peroxisome proliferator-activated receptor-alpha activation attenuates 3-nitropropionic acid induced behavioral and biochemical alterations in rats: possible neuroprotective mechanisms, Eur. J. Pharmacol., 2012, 674, 33–43

    Article  PubMed  CAS  Google Scholar 

  60. Lovett-Racke A.E., Hussain R.Z., Northrop S., Choy J., Rocchini A., Matthes L., et al., Peroxisome proliferator-activated receptor alpha agonists as therapy for autoimmune disease, J. Immunol., 2004, 172, 5790–5798

    PubMed  CAS  Google Scholar 

  61. Dasgupta S., Roy A., Jana M., Hartley D.M., Pahan K., Gemfibrozil ameliorates relapsing-remitting experimental autoimmune encephalomyelitis independent of peroxisome proliferator-activated receptor-alpha, Mol. Pharmacol., 2007, 72, 934–946

    Article  PubMed  CAS  Google Scholar 

  62. Gocke A.R., Hussain R.Z., Yang Y., Peng H., Weiner J., Ben L.H., et al., Transcriptional modulation of the immune response by peroxisome proliferator-activated receptor-{alpha} agonists in autoimmune disease, J. Immunol., 2009, 182, 4479–4487

    Article  PubMed  CAS  Google Scholar 

  63. Gray E., Ginty M., Kemp K., Scolding N., Wilkins A., Peroxisome proliferator-activated receptor-alpha agonists protect cortical neurons from inflammatory mediators and improve peroxisomal function, Eur. J. Neurosci., 2011, 33, 1421–1432

    Article  PubMed  Google Scholar 

  64. Zhu Y., Alvares K., Huang Q., Rao M.S., Reddy J.K., Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver, J. Biol. Chem., 1993, 268, 26817–26820

    PubMed  CAS  Google Scholar 

  65. Kliewer S.A., Forman B.M., Blumberg B., Ong E.S., Borgmeyer U., Mangelsdorf D.J., et al., Differential expression and activation of a family of murine peroxisome proliferator-activated receptors, Proc. Natl. Acad. Sci. USA, 1994, 91, 7355–7359

    Article  PubMed  CAS  Google Scholar 

  66. Sarruf D.A., Yu F., Nguyen H.T., Williams D.L., Printz R.L., Niswender K.D., et al., Expression of peroxisome proliferator-activated receptorgamma in key neuronal subsets regulating glucose metabolism and energy homeostasis, Endocrinology, 2009, 150, 707–712

    Article  PubMed  CAS  Google Scholar 

  67. Lehrke M., Lazar M.A., The many faces of PPARgamma, Cell, 2005, 123, 993–999

    Article  PubMed  CAS  Google Scholar 

  68. Gillespie W., Tyagi N., Tyagi S.C., Role of PPARgamma, a nuclear hormone receptor in neuroprotection, Indian J. Biochem. Biophys., 2011, 48, 73–81

    PubMed  CAS  Google Scholar 

  69. Chen Y.C., Wu J.S., Tsai H.D., Huang C.Y., Chen J.J., Sun G.Y., et al., Peroxisome Proliferator-Activated Receptor gamma (PPAR-gamma) and neurodegenerative disorders, Mol. Neurobiol., 2012, [Epub ahead of print]

  70. Breidert T., Callebert J., Heneka M.T., Landreth G., Launay J.M., Hirsch E.C., Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease, J. Neurochem., 2002, 82, 615–624

    Article  PubMed  CAS  Google Scholar 

  71. Shimazu T., Inoue I., Araki N., Asano Y., Sawada M., Furuya D., et al., A peroxisome proliferator-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia, Stroke, 2005, 36, 353–359

    Article  PubMed  CAS  Google Scholar 

  72. Sundararajan S., Gamboa J.L., Victor N.A., Wanderi E.W., Lust W.D., Landreth G.E., Peroxisome proliferator-activated receptorgamma ligands reduce inflammation and infarction size in transient focal ischemia, Neuroscience, 2005, 130, 685–696

    Article  PubMed  CAS  Google Scholar 

  73. Zhao Y., Patzer A., Gohlke P., Herdegen T., Culman J., The intracerebral application of the PPARgamma-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain, Eur. J. Neurosci., 2005, 22, 278–282

    Article  PubMed  Google Scholar 

  74. Collino M., Aragno M., Mastrocola R., Gallicchio M., Rosa A.C., Dianzani C., et al., Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion, Eur. J. Pharmacol., 2006, 530, 70–80

    Article  PubMed  CAS  Google Scholar 

  75. Tureyen K., Kapadia R., Bowen K.K., Satriotomo I., Liang J., Feinstein D.L., et al., Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents, J. Neurochem., 2007, 101, 41–56

    Article  PubMed  CAS  Google Scholar 

  76. Schmerbach K., Schefe J.H., Krikov M., Muller S., Villringer A., Kintscher U., et al., Comparison between single and combined treatment with candesartan and pioglitazone following transient focal ischemia in rat brain, Brain Res., 2008, 1208, 225–233

    Article  PubMed  CAS  Google Scholar 

  77. Patzer A., Zhao Y., Stock I., Gohlke P., Herdegen T., Culman J., Peroxisome proliferator-activated receptorsgamma (PPARgamma) differently modulate the interleukin-6 expression in the peri-infarct cortical tissue in the acute and delayed phases of cerebral ischaemia, Eur. J. Neurosci., 2008, 28, 1786–1794

    Article  PubMed  Google Scholar 

  78. Lee S.R., Kim H.Y., Hong J.S., Baek W.K., Park J.W., PPARgamma agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia, Biochem. Biophys. Res. Commun., 2009, 380, 17–21

    Article  PubMed  CAS  Google Scholar 

  79. Ji S., Kronenberg G., Balkaya M., Farber K., Gertz K., Kettenmann H., et al., Acute neuroprotection by pioglitazone after mild brain ischemia without effect on long-term outcome, Exp. Neurol., 2009, 216, 321–328

    Article  PubMed  CAS  Google Scholar 

  80. Kaundal R.K., Iyer S., Kumar A., Sharma S.S., Protective effects of pioglitazone against global cerebral ischemic-reperfusion injury in gerbils, J. Pharmacol. Sci., 2009, 109, 361–367

    Article  PubMed  CAS  Google Scholar 

  81. Zhang H.L., Xu M., Wei C., Qin A.P., Liu C.F., Hong L.Z., et al., Neuroprotective effects of pioglitazone in a rat model of permanent focal cerebral ischemia are associated with peroxisome proliferators-activated receptor gamma-mediated suppression of nuclear factor-kappaB signaling pathway, Neuroscience, 2011, 176, 381–395

    Article  PubMed  CAS  Google Scholar 

  82. Feinstein D.L., Galea E., Gavrilyuk V., Brosnan C.F., Whitacre C.C., Dumitrescu-Ozimek L., et al., Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis, Ann. Neurol., 2002, 51, 694–702

    Article  PubMed  CAS  Google Scholar 

  83. Schutz B., Reimann J., Dumitrescu-Ozimek L., Kappes-Horn K., Landreth G.E., Schurmann B., et al., The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosislike symptoms in superoxide dismutase-G93A transgenic mice, J. Neurosci., 2005, 25, 7805–7812

    Article  PubMed  Google Scholar 

  84. Kumar P., Kaundal R.K., More S., Sharma S.S., Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease, Behav. Brain Res., 2009, 197, 398–403

    Article  PubMed  CAS  Google Scholar 

  85. Searcy J.L., Phelps J.T., Pancani T., Kadish I., Popovic J., Anderson K.L., et al., Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer’s disease, J. Alzheimers Dis., 2012, 30, 943–961

    PubMed  CAS  Google Scholar 

  86. Gupta R., Gupta L.K., Improvement in long term and visuo-spatial memory following chronic pioglitazone in mouse model of Alzheimer’s disease, Pharmacol. Biochem. Behav., 2012, 102, 184–190

    Article  PubMed  CAS  Google Scholar 

  87. Wiggin T.D., Kretzler M., Pennathur S., Sullivan K.A., Brosius F.C., Feldman E.L., Rosiglitazone treatment reduces diabetic neuropathy in streptozotocin-treated DBA/2J mice, Endocrinology, 2008, 149, 4928–4937

    Article  PubMed  CAS  Google Scholar 

  88. Yamagishi S., Ogasawara S., Mizukami H., Yajima N., Wada R., Sugawara A., et al., Correction of protein kinase C activity and macrophage migration in peripheral nerve by pioglitazone, peroxisome proliferator activated-gamma-ligand, in insulin-deficient diabetic rats, J. Neurochem., 2008, 104, 491–499

    PubMed  CAS  Google Scholar 

  89. Sato T., Hanyu H., Hirao K., Kanetaka H., Sakurai H., Iwamoto T., Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease, Neurobiol. Aging, 2011, 32, 1626–1633

    Article  PubMed  CAS  Google Scholar 

  90. Geldmacher D.S., Fritsch T., McClendon M.J., Landreth G., A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease, Arch. Neurol., 2011, 68, 45–50

    Article  PubMed  Google Scholar 

  91. Harrington C., Sawchak S., Chiang C., Davies J., Donovan C., Saunders A.M., et al., Rosiglitazone does not improve cognition or global function when used as adjunctive therapy to AChE inhibitors in mild-to-moderate Alzheimer’s disease: two phase 3 studies, Curr. Alzheimer Res., 2011, 8, 592–606

    Article  PubMed  CAS  Google Scholar 

  92. Miller B.W., Willett K.C., Desilets A.R., Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease, Ann. Pharmacother., 2011, 45, 1416–1424

    Article  PubMed  CAS  Google Scholar 

  93. Roberts L.D., Murray A.J., Menassa D., Ashmore T., Nicholls A.W., Griffin J.L., The contrasting roles of PPARdelta and PPARgamma in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue, Genome Biol., 2011, 12, R75

    Article  PubMed  CAS  Google Scholar 

  94. Woods J.W., Tanen M., Figueroa D.J., Biswas C., Zycband E., Moller D.E., et al., Localization of PPARdelta in murine central nervous system: expression in oligodendrocytes and neurons, Brain Res., 2003, 975, 10–21

    Article  PubMed  CAS  Google Scholar 

  95. Kalinin S., Richardson J.C., Feinstein D.L., A PPARdelta agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer’s disease, Curr. Alzheimer Res., 2009, 6, 431–437

    Article  PubMed  CAS  Google Scholar 

  96. Iwashita A., Muramatsu Y., Yamazaki T., Muramoto M., Kita Y., Yamazaki S., et al., Neuroprotective efficacy of the peroxisome proliferatoractivated receptor delta-selective agonists in vitro and in vivo, J. Pharmacol. Exp. Ther., 2007, 320, 1087–1096

    Article  PubMed  CAS  Google Scholar 

  97. Yin K.J., Deng Z., Hamblin M., Xiang Y., Huang H., Zhang J., et al., Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury, J. Neurosci., 2010, 30, 6398–6408

    Article  PubMed  CAS  Google Scholar 

  98. Cramer P.E., Cirrito J.R., Wesson D.W., Lee C.Y., Karlo J.C., Zinn A.E., et al., ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models, Science, 2012, 335, 1503–1506

    Article  PubMed  CAS  Google Scholar 

  99. Friling S., Bergsland M., Kjellander S., Activation of Retinoid X Receptor increases dopamine cell survival in models for Parkinson’s disease, BMC Neurosci., 2009, 10, 146

    Article  PubMed  Google Scholar 

  100. Tsunemi T., La Spada A.R., PGC-1alpha at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond, Prog. Neurobiol., 2012, 97, 142–151

    Article  PubMed  CAS  Google Scholar 

  101. Lin J., Wu P.H., Tarr P.T., Lindenberg K.S., St-Pierre J., Zhang C.Y., et al., Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice, Cell, 2004, 119, 121–135

    Article  PubMed  CAS  Google Scholar 

  102. Leone T.C., Lehman J.J., Finck B.N., Schaeffer P.J., Wende A.R., Boudina S., et al., PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis, PLoS Biol., 2005, 3, e101

    Article  PubMed  Google Scholar 

  103. Cui L., Jeong H., Borovecki F., Parkhurst C.N., Tanese N., Krainc D., Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration, Cell, 2006, 127, 59–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles V. Mobbs.

About this article

Cite this article

Mobbs, C.V., Moreno, C.L., Kim, E.S. et al. Neuroprotection by dietary restriction and the PPAR transcription complex. Translat.Neurosci. 3, 234–241 (2012). https://doi.org/10.2478/s13380-012-0035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0035-8

Keywords

Navigation