Skip to main content
Log in

Soluble forms of tau are toxic in Alzheimer’s disease

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Accumulation of neurofibrillary tangles (NFT), intracellular inclusions of fibrillar forms of tau, is a hallmark of Alzheimer’s disease. NFT have been considered causative of neuronal death, however, recent evidence challenges this idea. Other species of tau, such as soluble misfolded, hyperphosphorylated, and mislocalized forms, are now being implicated as toxic. Here we review the data supporting soluble tau as toxic to neurons and synapses in the brain and the implications of these data for development of therapeutic strategies for Alzheimer’s disease and other tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gotz J., Ittner A., Ittner L.M., Tau-targeted treatment strategies in Alzheimer’s disease, Br. J. Pharmacol., 2012, 165, 1246–1259

    PubMed  CAS  Google Scholar 

  2. Huang Y., Mucke L., Alzheimer mechanisms and therapeutic strategies, Cell, 2012, 148, 1204–1222

    PubMed  CAS  Google Scholar 

  3. Selkoe D.J., Resolving controversies on the path to Alzheimer’s therapeutics, Nat. Med., 2011, 17, 1060–1065

    PubMed  CAS  Google Scholar 

  4. Ittner L.M., Gotz J., Amyloid-beta and tau—a toxic pas de deux in Alzheimer’s disease, Nat. Rev. Neurosci., 2011, 12, 65–72

    PubMed  CAS  Google Scholar 

  5. Alzheimer A., Stelzmann R.A., Schnitzlein H.N., Murtagh F.R., An English translation of Alzheimer’s 1907 paper, “Über eine eigenartige Erkankung der Hirnrinde”, Clin Anat, 1995, 8, 429–431

    PubMed  CAS  Google Scholar 

  6. Maurer K., Volk S., Gerbaldo H., Auguste D and Alzheimer’s disease, Lancet, 1997, 349, 1546–1549

    PubMed  CAS  Google Scholar 

  7. Coleman P.D., Yao P.J., Synaptic slaughter in Alzheimer’s disease, Neurobiol. Aging, 2003, 24, 1023–1027

    PubMed  CAS  Google Scholar 

  8. DeKosky S.T., Scheff S.W., Styren S.D., Structural correlates of cognition in dementia: quantification and assessment of synapse change, Neurodegeneration, 1996, 5, 417–421

    PubMed  CAS  Google Scholar 

  9. Terry R.D., Masliah E., Salmon D.P., Butters N., DeTeresa R., Hill R., et al., Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol., 1991, 30, 572–580

    PubMed  CAS  Google Scholar 

  10. Bittner T., Fuhrmann M., Burgold S., Ochs S.M., Hoffmann N., Mitteregger G., et al., Multiple events lead to dendritic spine loss in triple transgenic Alzheimer’s disease mice, PLoS One, 2010, 5, e15477

    PubMed  Google Scholar 

  11. Bretteville A., Planel E., Tau aggregates: toxic, inert, or protective species?, J. Alzheimers Dis., 2008, 14, 431–436

    PubMed  Google Scholar 

  12. Selkoe D.J., Alzheimer’s disease: genes, proteins, and therapy, Physiol. Rev., 2001, 81, 741–766

    PubMed  CAS  Google Scholar 

  13. Swerdlow R.H., Burns J.M., Khan S.M., The Alzheimer’s disease mitochondrial cascade hypothesis, J. Alzheimers Dis., 2010, 20Suppl. 2, S265–279

    PubMed  Google Scholar 

  14. Zempel H., Thies E., Mandelkow E., Mandelkow E.M., Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines, J. Neurosci., 2010, 30, 11938–11950

    PubMed  CAS  Google Scholar 

  15. Brunden K.R., Ballatore C., Crowe A., Smith A.B., 3rd, Lee V.M., Trojanowski J.Q., Tau-directed drug discovery for Alzheimer’s disease and related tauopathies: a focus on tau assembly inhibitors, Exp. Neurol., 2010, 223, 304–310

    PubMed  CAS  Google Scholar 

  16. Brunden K.R., Trojanowski J.Q., Lee V.M., Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies, Nat. Rev. Drug Discov., 2009, 8, 783–793

    PubMed  CAS  Google Scholar 

  17. Hutton M., Lendon C.L., Rizzu P., Baker M., Froelich S., Houlden H., et al., Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17, Nature, 1998, 393, 702–705

    PubMed  CAS  Google Scholar 

  18. Spires-Jones T.L., Stoothoff W.H., de Calignon A., Jones P.B., Hyman B.T., Tau pathophysiology in neurodegeneration: a tangled issue, Trends Neurosci., 2009, 32, 150–159

    PubMed  CAS  Google Scholar 

  19. Arriagada P.V., Growdon J.H., Hedley-Whyte E.T., Hyman B.T., Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease, Neurology, 1992, 42, 631–639

    PubMed  CAS  Google Scholar 

  20. Giannakopoulos P., Herrmann F.R., Bussiere T., Bouras C., Kovari E., Perl D.P., et al., Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease, Neurology, 2003, 60, 1495–1500

    PubMed  CAS  Google Scholar 

  21. Gomez-Isla T., Hollister R., West H., Mui S., Growdon J.H., Petersen R.C., et al., Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease, Ann. Neurol., 1997, 41, 17–24

    PubMed  CAS  Google Scholar 

  22. Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models, Cell, 2010, 142, 387–397

    PubMed  CAS  Google Scholar 

  23. Roberson E.D., Halabisky B., Yoo J.W., Yao J., Chin J., Yan F., et al., Amyloid-{beta}/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease, J. Neurosci., 2011, 31, 700–711

    PubMed  CAS  Google Scholar 

  24. Roberson E.D., Scearce-Levie K., Palop J.J., Yan F., Cheng I.H., Wu T., et al., Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model, Science, 2007, 316, 750–754

    PubMed  CAS  Google Scholar 

  25. Vossel K.A., Zhang K., Brodbeck J., Daub A.C., Sharma P., Finkbeiner S., et al., Tau reduction prevents Abeta-induced defects in axonal transport, Science, 2010, 330, 198

    PubMed  CAS  Google Scholar 

  26. Yu W., Polepalli J., Wagh D., Rajadas J., Malenka R., Lu B., A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Abeta on synapses and dendritic spines, Hum. Mol. Genet., 2012, 21, 1384–1390

    PubMed  CAS  Google Scholar 

  27. Hyman B.T., Amyloid-dependent and amyloid-independent stages of Alzheimer disease, Arch. Neurol., 2011, 68, 1062–1064

    PubMed  Google Scholar 

  28. Gendron T.F., Petrucelli L., The role of tau in neurodegeneration, Mol. Neurodegener., 2009, 4, 13

    PubMed  Google Scholar 

  29. Ballatore C., Lee V.M., Trojanowski J.Q., Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders, Nat. Rev. Neurosci., 2007, 8, 663–672

    PubMed  CAS  Google Scholar 

  30. Ittner A., Ke Y.D., van Eersel J., Gladbach A., Gotz J., Ittner L.M., Brief update on different roles of tau in neurodegeneration, IUBMB Life, 2011, 63, 495–502

    PubMed  CAS  Google Scholar 

  31. Avila J., Perez M., Lim F., Gomez-Ramos A., Hernandez F., Lucas J.J., Tau in neurodegenerative diseases: tau phosphorylation and assembly, Neurotox. Res., 2004, 6, 477–482

    PubMed  CAS  Google Scholar 

  32. Alonso A.C., Grundke-Iqbal I., Iqbal K., Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules, Nat. Med., 1996, 2, 783–787

    PubMed  CAS  Google Scholar 

  33. Alonso A.C., Zaidi T., Grundke-Iqbal I., Iqbal K., Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease, Proc. Natl. Acad. Sci. USA, 1994, 91, 5562–5566

    PubMed  CAS  Google Scholar 

  34. Iqbal K., Alonso Adel C., Grundke-Iqbal I., Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly, J. Alzheimers Dis., 2008, 14, 365–370

    PubMed  Google Scholar 

  35. Eckermann K., Mocanu M.M., Khlistunova I., Biernat J., Nissen A., Hofmann A., et al., The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy, J. Biol. Chem., 2007, 282, 31755–31765

    PubMed  CAS  Google Scholar 

  36. Li X., Kumar Y., Zempel H., Mandelkow E.M., Biernat J., Mandelkow E., Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration, EMBO J., 2011, 30, 4825–4837

    PubMed  CAS  Google Scholar 

  37. Spires-Jones T.L., Kopeikina K.J., Koffie R.M., de Calignon A., Hyman B.T., Are tangles as toxic as they look?, J. Mol. Neurosci., 2011, 45, 438–444

    PubMed  CAS  Google Scholar 

  38. Kimura T., Fukuda T., Sahara N., Yamashita S., Murayama M., Mizoroki T., et al., Aggregation of detergent-insoluble tau is involved in neuronal loss but not in synaptic loss, J. Biol. Chem., 2010, 285, 38692–38699

    PubMed  CAS  Google Scholar 

  39. Mocanu M.M., Nissen A., Eckermann K., Khlistunova I., Biernat J., Drexler D., et al., The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy, J. Neurosci., 2008, 28, 737–748

    PubMed  CAS  Google Scholar 

  40. Takashima A., Hyperphosphorylated tau is a cause of neuronal dysfunction in tauopathy, J. Alzheimers Dis., 2008, 14, 371–375

    PubMed  Google Scholar 

  41. Brunden K.R., Trojanowski J.Q., Lee V.M., Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments, J. Alzheimers Dis., 2008, 14, 393–399

    PubMed  Google Scholar 

  42. Braak H., Braak E., Staging of Alzheimer’s disease-related neurofibrillary changes, Neurobiol. Aging, 1995, 16, 271–278; discussion 278–284

    PubMed  CAS  Google Scholar 

  43. Braak H., Del Tredici K., Alzheimer’s disease: pathogenesis and prevention, Alzheimers Dement., 2012, 8, 227–233

    PubMed  CAS  Google Scholar 

  44. Bezprozvanny I., Mattson M.P., Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease, Trends Neurosci., 2008, 31, 454–463

    PubMed  CAS  Google Scholar 

  45. Furukawa K., Wang Y., Yao P.J., Fu W., Mattson M.P., Itoyama Y., et al., Alteration in calcium channel properties is responsible for the neurotoxic action of a familial frontotemporal dementia tau mutation, J. Neurochem., 2003, 87, 427–436

    PubMed  CAS  Google Scholar 

  46. Mattson M.P., Calcium and neurodegeneration, Aging Cell, 2007, 6, 337–350

    PubMed  CAS  Google Scholar 

  47. Mattson M.P., Chan S.L., Neuronal and glial calcium signaling in Alzheimer’s disease, Cell Calcium, 2003, 34, 385–397

    PubMed  CAS  Google Scholar 

  48. Sydow A., Van der Jeugd A., Zheng F., Ahmed T., Balschun D., Petrova O., et al., Reversibility of Tau-related cognitive defects in a regulatable FTD mouse model, J. Mol. Neurosci., 2011, 45, 432–437

    PubMed  CAS  Google Scholar 

  49. Sydow A., Van der Jeugd A., Zheng F., Ahmed T., Balschun D., Petrova O., et al., Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant, J. Neurosci., 2011, 31, 2511–2525

    PubMed  CAS  Google Scholar 

  50. Braak H., Braak E., Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease, Neurobiol. Aging, 1997, 18, S85–88

    PubMed  CAS  Google Scholar 

  51. Andorfer C., Acker C.M., Kress Y., Hof P.R., Duff K., Davies P., Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms, J. Neurosci., 2005, 25, 5446–5454

    PubMed  CAS  Google Scholar 

  52. Polydoro M., Acker C.M., Duff K., Castillo P.E., Davies P., Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology, J. Neurosci., 2009, 29, 10741–10749

    PubMed  CAS  Google Scholar 

  53. Wittmann C.W., Wszolek M.F., Shulman J.M., Salvaterra P.M., Lewis J., Hutton M., et al., Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles, Science, 2001, 293, 711–714

    PubMed  CAS  Google Scholar 

  54. Santacruz K., Lewis J., Spires T., Paulson J., Kotilinek L., Ingelsson M., et al., Tau suppression in a neurodegenerative mouse model improves memory function, Science, 2005, 309, 476–481

    PubMed  CAS  Google Scholar 

  55. Spires T.L., Orne J.D., SantaCruz K., Pitstick R., Carlson G.A., Ashe K.H., et al., Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy, Am. J. Pathol., 2006, 168, 1598–1607

    PubMed  CAS  Google Scholar 

  56. Rocher A.B., Crimins J.L., Amatrudo J.M., Kinson M.S., Todd-Brown M.A., Lewis J., et al., Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs, Exp. Neurol., 2010, 223, 385–393

    PubMed  CAS  Google Scholar 

  57. Fox L.M., William C.M., Adamowicz D.H., Pitstick R., Carlson G.A., Spires-Jones T.L., et al., Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model, J. Neuropathol. Exp. Neurol., 2011, 70, 588–595

    PubMed  CAS  Google Scholar 

  58. de Calignon A.F., LM. Pitstick, R. Carlson, GA. Bacskai, BJ. Spires-Jones, TL. Hyman, BT., Caspase activation precedes and leads to tangles, Nature, 2010, 464, 1201–1204

    PubMed  Google Scholar 

  59. Spires-Jones T.L., de Calignon A., Matsui T., Zehr C., Pitstick R., Wu H.Y., et al., In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons, J. Neurosci., 2008, 28, 862–867

    PubMed  CAS  Google Scholar 

  60. Shahani N., Subramaniam S., Wolf T., Tackenberg C., Brandt R., Tau aggregation and progressive neuronal degeneration in the absence of changes in spine density and morphology after targeted expression of Alzheimer’s disease-relevant tau constructs in organotypic hippocampal slices, J. Neurosci., 2006, 26, 6103–6114

    PubMed  CAS  Google Scholar 

  61. Baas P.W., Qiang L., Neuronal microtubules: when the MAP is the roadblock, Trends Cell Biol., 2005, 15, 183–187

    PubMed  CAS  Google Scholar 

  62. Dixit R., Ross J.L., Goldman Y.E., Holzbaur E.L., Differential regulation of dynein and kinesin motor proteins by tau, Science, 2008, 319, 1086–1089

    PubMed  CAS  Google Scholar 

  63. Dubey M., Chaudhury P., Kabiru H., Shea T.B., Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate taumediated neurite instability, Cell Motil. Cytoskeleton, 2008, 65, 89–99

    PubMed  CAS  Google Scholar 

  64. Ebneth A., Godemann R., Stamer K., Illenberger S., Trinczek B., Mandelkow E., Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease, J. Cell Biol., 1998, 143, 777–794

    PubMed  CAS  Google Scholar 

  65. Stamer K., Vogel R., Thies E., Mandelkow E., Mandelkow E.M., Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, J. Cell Biol., 2002, 156, 1051–1063

    PubMed  CAS  Google Scholar 

  66. Stoothoff W., Jones P.B., Spires-Jones T.L., Joyner D., Chhabra E., Bercury K., et al., Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport, J. Neurochem., 2009, 111, 417–427

    PubMed  CAS  Google Scholar 

  67. Thies E., Mandelkow E.M., Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1, J. Neurosci., 2007, 27, 2896–2907

    PubMed  CAS  Google Scholar 

  68. Berger Z., Roder H., Hanna A., Carlson A., Rangachari V., Yue M., et al., Accumulation of pathological tau species and memory loss in a conditional model of tauopathy, J. Neurosci., 2007, 27, 3650–3662

    PubMed  CAS  Google Scholar 

  69. Hoover B.R., Reed M.N., Su J., Penrod R.D., Kotilinek L.A., Grant M.K., et al., Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration, Neuron, 2010, 68, 1067–1081

    PubMed  CAS  Google Scholar 

  70. Yoshiyama Y., Higuchi M., Zhang B., Huang S.M., Iwata N., Saido T.C., et al., Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model, Neuron, 2007, 53, 337–351

    PubMed  CAS  Google Scholar 

  71. Clavaguera F., Bolmont T., Crowther R.A., Abramowski D., Frank S., Probst A., et al., Transmission and spreading of tauopathy in transgenic mouse brain, Nat. Cell Biol., 2009, 11, 909–913

    PubMed  CAS  Google Scholar 

  72. de Calignon A., Polydoro M., Suarez-Calvet M., William C., Adamowicz D.H., Kopeikina K.J., et al., Propagation of tau pathology in a model of early Alzheimer’s disease, Neuron, 2012, 73, 685–697

    PubMed  Google Scholar 

  73. Frost B., Jacks R.L., Diamond M.I., Propagation of tau misfolding from the outside to the inside of a cell, J. Biol. Chem., 2009, 284, 12845–12852

    PubMed  CAS  Google Scholar 

  74. Gomez-Ramos A., Diaz-Hernandez M., Rubio A., Miras-Portugal M.T., Avila J., Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells, Mol. Cell. Neurosci., 2008, 37, 673–681

    PubMed  CAS  Google Scholar 

  75. Hollenbeck P.J., Saxton W.M., The axonal transport of mitochondria, J. Cell Sci., 2005, 118, 5411–5419

    PubMed  CAS  Google Scholar 

  76. Wang X., Schwarz T.L., The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility, Cell, 2009, 136, 163–174

    PubMed  CAS  Google Scholar 

  77. Lin M.T., Beal M.F., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, 2006, 443, 787–795

    PubMed  CAS  Google Scholar 

  78. Morfini G.A., Burns M., Binder L.I., Kanaan N.M., LaPointe N., Bosco D.A., et al., Axonal transport defects in neurodegenerative diseases, J. Neurosci., 2009, 29, 12776–12786

    PubMed  CAS  Google Scholar 

  79. Querfurth H.W., LaFerla F.M., Alzheimer’s disease, N. Engl. J. Med., 2010, 362, 329–344

    PubMed  CAS  Google Scholar 

  80. Wang X., Su B., Lee H.G., Li X., Perry G., Smith M.A., et al., Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease, J. Neurosci., 2009, 29, 9090–9103

    PubMed  CAS  Google Scholar 

  81. Wang X., Su B., Zheng L., Perry G., Smith M.A., Zhu X., The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease, J. Neurochem., 2009, 109 Suppl. 1, 153–159

    Google Scholar 

  82. Westermann B., Mitochondrial fusion and fission in cell life and death, Nat. Rev. Mol. Cell Biol., 2010, 11, 872–884

    PubMed  CAS  Google Scholar 

  83. Yuan A., Kumar A., Peterhoff C., Duff K., Nixon R.A., Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice, J. Neurosci., 2008, 28, 1682–1687

    PubMed  CAS  Google Scholar 

  84. Morris M., Maeda S., Vossel K., Mucke L., The many faces of tau, Neuron, 2011, 70, 410–426

    PubMed  CAS  Google Scholar 

  85. LaPointe N.E., Morfini G., Pigino G., Gaisina I.N., Kozikowski A.P., Binder L.I., et al., The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity, J. Neurosci. Res., 2009, 87, 440–451

    PubMed  CAS  Google Scholar 

  86. Muresan V., Muresan Z., Is abnormal axonal transport a cause, a contributing factor or a consequence of the neuronal pathology in Alzheimer’s disease?, Future Neurol., 2009, 4, 761–773

    PubMed  CAS  Google Scholar 

  87. Ittner L.M., Ke Y.D., Gotz J., Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease, J. Biol. Chem., 2009, 284, 20909–20916

    PubMed  CAS  Google Scholar 

  88. Tackenberg C., Brandt R., Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau, J. Neurosci., 2009, 29, 14439–14450

    PubMed  CAS  Google Scholar 

  89. Amadoro G., Corsetti V., Stringaro A., Colone M., D’Aguanno S., Meli G., et al., A NH2 tau fragment targets neuronal mitochondria at AD synapses: possible implications for neurodegeneration, J. Alzheimers Dis., 2010, 21, 445–470

    PubMed  CAS  Google Scholar 

  90. Bobba A., Petragallo V.A., Marra E., Atlante A., Alzheimer’s proteins, oxidative stress, and mitochondrial dysfunction interplay in a neuronal model of Alzheimer’s disease, Int. J. Alzheimers Dis., 2010, pii: 621870

  91. Decker H., Lo K.Y., Unger S.M., Ferreira S.T., Silverman M.A., Amyloidbeta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons, J. Neurosci., 2010, 30, 9166–9171

    PubMed  CAS  Google Scholar 

  92. Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Clos A.L., Jackson G.R., Kayed R., Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice, Mol. Neurodegener., 2011, 6, 39

    PubMed  Google Scholar 

  93. Sheng Z.H., Cai Q., Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration, Nat. Rev. Neurosci., 2012, 13, 77–93

    PubMed  CAS  Google Scholar 

  94. Chen H., Chan D.C., Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases, Hum. Mol. Genet., 2009, 18, R169–176

    PubMed  CAS  Google Scholar 

  95. Gibson G.E., Starkov A., Blass J.P., Ratan R.R., Beal M.F., Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases, Biochim. Biophys. Acta, 2010, 1802, 122–134

    PubMed  CAS  Google Scholar 

  96. David D.C., Hauptmann S., Scherping I., Schuessel K., Keil U., Rizzu P., et al., Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice, J. Biol. Chem., 2005, 280, 23802–23814

    PubMed  CAS  Google Scholar 

  97. Eckert A., Schulz K.L., Rhein V., Gotz J., Convergence of amyloidbeta and tau pathologies on mitochondria in vivo, Mol. Neurobiol., 2010, 41, 107–114

    PubMed  CAS  Google Scholar 

  98. Mandelkow E.M., Thies E., Trinczek B., Biernat J., Mandelkow E., MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons, J. Cell Biol., 2004, 167, 99–110

    PubMed  CAS  Google Scholar 

  99. Kopeikina K.J., Carlson G.A., Pitstick R., Ludvigson A.E., Peters A., Luebke J.I., et al., Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain, Am. J. Pathol., 2011, 179, 2071–2082

    PubMed  CAS  Google Scholar 

  100. Du H., Guo L., Yan S., Sosunov A.A., McKhann G.M., Yan S.S., Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model, Proc. Natl. Acad. Sci. USA, 2010, 107, 18670–18675

    PubMed  CAS  Google Scholar 

  101. D’Amelio M., Cavallucci V., Middei S., Marchetti C., Pacioni S., Ferri A., et al., Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease, Nat. Neurosci., 2011, 14, 69–76

    PubMed  Google Scholar 

  102. Quintanilla R.A., Matthews-Roberson T.A., Dolan P.J., Johnson G.V., Caspase-cleaved tau expression induces mitochondrial dysfunction in immortalized cortical neurons: implications for the pathogenesis of Alzheimer disease, J. Biol. Chem., 2009, 284, 18754–18766

    PubMed  CAS  Google Scholar 

  103. Berridge M.J., Calcium signalling and Alzheimer’s disease, Neurochem. Res., 2011, 36, 1149–1156

    PubMed  CAS  Google Scholar 

  104. Chakroborty S., Stutzmann G.E., Early calcium dysregulation in Alzheimer’s disease: setting the stage for synaptic dysfunction, Sci. China Life Sci., 2011, 54, 752–762

    PubMed  CAS  Google Scholar 

  105. Khachaturian Z.S., Calcium hypothesis of Alzheimer’s disease and brain aging, Ann. NY Acad. Sci., 1994, 747, 1–11

    PubMed  CAS  Google Scholar 

  106. Sabatini B.L., Maravall M., Svoboda K., Ca(2+) signaling in dendritic spines, Curr. Opin. Neurobiol., 2001, 11, 349–356

    PubMed  CAS  Google Scholar 

  107. Zempel H., Mandelkow E.M., Linking amyloid-beta and tau: amyloid-beta induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton, Neurodegener. Dis., 2011, 10, 64–72

    PubMed  Google Scholar 

  108. Hermes M., Eichhoff G., Garaschuk O., Intracellular calcium signalling in Alzheimer’s disease, J. Cell. Mol. Med., 2010, 14, 30–41

    PubMed  CAS  Google Scholar 

  109. Kuchibhotla K.V., Goldman S.T., Lattarulo C.R., Wu H.Y., Hyman B.T., Bacskai B.J., Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks, Neuron, 2008, 59, 214–225

    PubMed  CAS  Google Scholar 

  110. Crimins J.L., Rocher A.B., Peters A., Shultz P., Lewis J., Luebke J.I., Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy, Acta Neuropathol., 2011, 122, 551–564

    PubMed  Google Scholar 

  111. Kremer A., Maurin H., Demedts D., Devijver H., Borghgraef P., Van Leuven F., Early improved and late defective cognition is reflected by dendritic spines in Tau.P301L mice, J. Neurosci., 2011, 31, 18036–18047

    PubMed  CAS  Google Scholar 

  112. de Calignon A., Spires-Jones T.L., Pitstick R., Carlson G.A., Hyman B.T., Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy, J. Neuropathol. Exp. Neurol., 2009, 68, 757–761

    PubMed  Google Scholar 

  113. de Calignon A., Fox L.M., Pitstick R., Carlson G.A., Bacskai B.J., Spires-Jones T.L., et al., Caspase activation precedes and leads to tangles, Nature, 2010, 464, 1201–1204

    PubMed  Google Scholar 

  114. Reddy P.H., Reddy T.P., Manczak M., Calkins M.J., Shirendeb U., Mao P., Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases, Brain Res. Rev., 2010, 67, 103–118

    PubMed  Google Scholar 

  115. Verstreken P., Ly C.V., Venken K.J., Koh T.W., Zhou Y., Bellen H.J., Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions, Neuron, 2005, 47, 365–378

    PubMed  CAS  Google Scholar 

  116. Selkoe D.J., Alzheimer’s disease is a synaptic failure, Science, 2002, 298, 789–791

    PubMed  CAS  Google Scholar 

  117. Dickstein D.L., Brautigam H., Stockton S.D., Jr., Schmeidler J., Hof P.R., Changes in dendritic complexity and spine morphology in transgenic mice expressing human wild-type tau, Brain Struct. Funct., 2010, 214, 161–179

    PubMed  Google Scholar 

  118. Lasagna-Reeves C.A., Castillo-Carranza D.L., Guerrero-Muoz M.J., Jackson G.R., Kayed R., Preparation and characterization of neurotoxic tau oligomers, Biochemistry, 2010, 49, 10039–10041

    PubMed  CAS  Google Scholar 

  119. Medina D.X., Caccamo A., Oddo S., Methylene blue reduces abeta levels and rescues early cognitive deficit by increasing proteasome activity, Brain Pathol., 2011, 21, 140–149

    PubMed  CAS  Google Scholar 

  120. Wischik C., Staff R., Challenges in the conduct of disease-modifying trials in AD: practical experience from a phase 2 trial of Tauaggregation inhibitor therapy, J. Nutr. Health Aging, 2009, 13, 367–369

    PubMed  CAS  Google Scholar 

  121. Asuni A.A., Boutajangout A., Quartermain D., Sigurdsson E.M., Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements, J. Neurosci., 2007, 27, 9115–9129

    PubMed  CAS  Google Scholar 

  122. Bi M., Ittner A., Ke Y.D., Gotz J., Ittner L.M., Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice, PLoS One, 2011, 6, e26860

    PubMed  CAS  Google Scholar 

  123. Boutajangout A., Quartermain D., Sigurdsson E.M., Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model, J. Neurosci., 2010, 30, 16559–16566

    PubMed  CAS  Google Scholar 

  124. Bulic B., Pickhardt M., Khlistunova I., Biernat J., Mandelkow E.M., Mandelkow E., et al., Rhodanine-based tau aggregation inhibitors in cell models of tauopathy, Angew. Chem. Int. Ed. Engl., 2007, 46, 9215–9219

    PubMed  Google Scholar 

  125. Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M.K., Trojanowski J.Q., et al., Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform, Neuron, 1999, 24, 751–762

    PubMed  CAS  Google Scholar 

  126. Zhang B., Maiti A., Shively S., Lakhani F., McDonald-Jones G., Bruce J., et al., Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model, Proc. Natl. Acad. Sci. USA, 2005, 102, 227–231

    PubMed  CAS  Google Scholar 

  127. Gozes I., Divinski I., The femtomolar-acting NAP interacts with microtubules: Novel aspects of astrocyte protection, J. Alzheimers Dis., 2004, 6, S37–41

    PubMed  CAS  Google Scholar 

  128. Matsuoka Y., Gray A.J., Hirata-Fukae C., Minami S.S., Waterhouse E.G., Mattson M.P., et al., Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage, J. Mol. Neurosci., 2007, 31, 165–170

    PubMed  CAS  Google Scholar 

  129. Matsuoka Y., Jouroukhin Y., Gray A.J., Ma L., Hirata-Fukae C., Li H.F., et al., A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease, J. Pharmacol. Exp. Ther., 2008, 325, 146–153

    PubMed  CAS  Google Scholar 

  130. Gozes I., Stewart A., Morimoto B., Fox A., Sutherland K., Schmeche D., Addressing Alzheimer’s disease tangles: from NAP to AL-108, Curr. Alzheimer Res., 2009, 6, 455–460

    PubMed  CAS  Google Scholar 

  131. Green K.N., Calcium in the initiation, progression and as an effector of Alzheimer’s disease pathology, J. Cell. Mol. Med., 2009, 13, 2787–2799

    PubMed  CAS  Google Scholar 

  132. Meyer-Luehmann M., Spires-Jones T.L., Prada C., Garcia-Alloza M., de Calignon A., Rozkalne A., et al., Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease, Nature, 2008, 451, 720–724

    PubMed  CAS  Google Scholar 

  133. Koffie R.M., Farrar C.T., Saidi L.J., William C.M., Hyman B.T., Spires-Jones T.L., Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging, Proc. Natl. Acad. Sci. USA, 2011, 108, 18837–18842

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. Spires-Jones.

About this article

Cite this article

Kopeikina, K.J., Hyman, B.T. & Spires-Jones, T.L. Soluble forms of tau are toxic in Alzheimer’s disease. Translat.Neurosci. 3, 223–233 (2012). https://doi.org/10.2478/s13380-012-0032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0032-y

Keywords

Navigation