Skip to main content
Log in

Translational strategies to schizophrenia from a proteomic perspective

  • Commentary
  • Published:
Translational Neuroscience

Abstract

There is an urgent necessity of designing translational strategies to schizophrenia, a mental disorder that affects 30 million people worldwide. Proteomic studies have been providing data enough to pave the way for that, but these need to be connected in a concise manner in order to translate laboratorial findings to real improvements in the lives of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freedman R., Schizophrenia, N. Engl. J. Med., 2003, 349, 1738–1749

    Article  PubMed  CAS  Google Scholar 

  2. Brown A. S., The environment and susceptibility to schizophrenia, Prog. Neurobiol., 2011, 93, 23–58

    Article  PubMed  CAS  Google Scholar 

  3. Horvath S., Janka Z., Mirnics K., Analyzing schizophrenia by DNA microarrays, Biol. Psychiatry, 2011, 69, 157–162

    Article  PubMed  CAS  Google Scholar 

  4. Johnston-Wilson N. L., Sims C. D., Hofmann J. P., Anderson L., Shore A. D., Torrey E. F., et al., Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium, Mol. Psychiatry, 2000, 5, 142–149

    Article  PubMed  CAS  Google Scholar 

  5. Martins-de-Souza D., Guest P. C., Rahmoune H., Bahn S., Proteomic approaches to unravel the complexity of schizophrenia, Expert Rev. Proteomics, 2012, 9, 97–108

    Article  PubMed  CAS  Google Scholar 

  6. Martins-De-Souza D., Dias-Neto E., Schmitt A., Falkai P., Gormanns P., Maccarrone G., et al., Proteome analysis of schizophrenia brain tissue, World J. Biol. Psychiatry, 2010, 11, 110–120

    Article  PubMed  Google Scholar 

  7. Krishnamurthy D., Harris L. W., Levin Y., Koutroukides T. A., Rahmoune H., Pietsch S., et al., Metabolic, hormonal and stress-related molecular changes in post-mortem pituitary glands from schizophrenia subjects, World J. Biol. Psychiatry, 2012, [Epub ahead of print]

  8. Huang J. T., Leweke F. M., Oxley D., Wang L., Harris N., Koethe D., et al., Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis, PLoS Med., 2006, 3, e428

    Article  PubMed  Google Scholar 

  9. Martins-De-Souza D., Wobrock T., Zerr I., Schmitt A., Gawinecka J., Schneider-Axmann T., et al., Different apolipoprotein E, apolipoprotein A1 and prostaglandin-H2 D-isomerase levels in cerebrospinal fluid of schizophrenia patients and healthy controls, World J. Biol. Psychiatry, 2010, 11, 719–728

    Article  PubMed  Google Scholar 

  10. Prabakaran S., Wengenroth M., Lockstone H. E., Lilley K., Leweke F. M., Bahn S., 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia, J. Proteome Res., 2007, 6, 141–149

    Article  PubMed  CAS  Google Scholar 

  11. Herberth M., Koethe D., Cheng T. M., Krzyszton N. D., Schoeffmann S., Guest P. C., et al., Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients, Mol. Psychiatry, 2011, 16, 848–859

    Article  PubMed  CAS  Google Scholar 

  12. Wang L., Lockstone H. E., Guest P. C., Levin Y., Palotás A., Pietsch S., et al., Expression profiling of fibroblasts identifies cell cycle abnormalities in schizophrenia, J. Proteome Res., 2010, 9, 521–527

    Article  PubMed  CAS  Google Scholar 

  13. Guest P. C., Wang L., Harris L. W., Burling K., Levin Y., Ernst A., et al., Increased levels of circulating insulin-related peptides in first-onset, antipsychotic naïve schizophrenia patients, Mol. Psychiatry, 2010, 15, 118–119

    Article  PubMed  CAS  Google Scholar 

  14. Levin Y., Wang L., Schwarz E., Koethe D., Leweke F. M., Bahn S., Global proteomic profiling reveals altered proteomic signature in schizophrenia serum, Mol. Psychiatry, 2010, 15, 1088–1100

    Article  PubMed  CAS  Google Scholar 

  15. Schwarz E., Izmailov R., Spain M., Barnes A., Mapes J. P., Guest P. C., et al., Validation of a blood-based laboratory test to aid in the confirmation of a diagnosis of schizophrenia, Biomark. Insights, 2010, 5, 39–47

    PubMed  Google Scholar 

  16. Schwarz E., Guest P. C., Rahmoune H., Harris L. W., Wang L., Leweke F. M., et al., Identification of a biological signature for schizophrenia in serum, Mol. Psychiatry, 2012, 17, 494–502

    Article  PubMed  CAS  Google Scholar 

  17. Bahn S., Noll R., Barnes A., Schwarz E., Guest P. C., Challenges of introducing new biomarker products for neuropsychiatric disorders into the market, Int. Rev. Neurobiol., 2011, 101, 299–327

    PubMed  Google Scholar 

  18. Ji B., La Y., Gao L., Zhu H., Tian N., Zhang M., et al., A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications, J. Proteome Res., 2009, 8, 3633–3641

    Article  PubMed  CAS  Google Scholar 

  19. Chan M. K., Tsang T. M., Harris L. W., Guest P. C., Holmes E., Bahn S., Evidence for disease and antipsychotic medication effects in postmortem brain from schizophrenia patients, Mol. Psychiatry, 2011, 16, 1189–1202

    Article  PubMed  CAS  Google Scholar 

  20. Ahmed E. U., Ahmed S., Ukai W., Matsumoto I., Kemp A., McGregor I. S., et al., Antipsychotic induced alteration of growth and proteome of rat neural stem cells, Neurochem. Res., 2012, 37, 1649–1659

    Article  PubMed  CAS  Google Scholar 

  21. Gottschalk M. G., Sarnyai Z., Guest P. C., Harris L. W., Bahn, S., Translational neuropsychiatry of genetic and neurodevelopmental animal models of schizophrenia, Rev. Psiquiatr. Clin., 2012, in press

  22. Yanagi M., Southcott S., Lister J., Tamminga C. A., Animal models of schizophrenia emphasizing construct validity, Prog. Mol. Biol. Transl. Sci., 2012, 105, 411–444

    Article  PubMed  CAS  Google Scholar 

  23. Martins-de-Souza D., Alsaif M., Ernst A., Harris L. W., Aerts N., Lenaerts I., et al., The application of selective reaction monitoring confirms dysregulation of glycolysis in a preclinical model of schizophrenia, BMC Res. Notes, 2012, 5, 146

    Article  PubMed  CAS  Google Scholar 

  24. Paulson L., Martin P., Nilsson C. L., Ljung E., Westman-Brinkmalm A., Blennow K., et al., Comparative proteome analysis of thalamus in MK-801-treated rats, Proteomics, 2004, 4, 819–825

    Article  PubMed  CAS  Google Scholar 

  25. Martins-de-Souza D., Lebar M., Turck C. W., Proteome analyses of cultured astrocytes treated with MK-801 and clozapine: similarities with schizophrenia, Eur. Arch. Psychiatry Clin. Neurosci., 2011, 261, 217–228

    Article  PubMed  Google Scholar 

  26. Steiner J., Sarnyai Z., Westphal S., Gos T., Bernstein H. G., Bogerts B., et al., Protective effects of haloperidol and clozapine on energy-deprived OLN-93 oligodendrocytes, Eur. Arch. Psychiatry Clin. Neurosci., 2011, 261, 477–482

    Article  PubMed  Google Scholar 

  27. Bernstein H. G., Steiner J., Bogerts B., Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy, Expert Rev. Neurother., 2009, 9, 1059–1071

    Article  PubMed  CAS  Google Scholar 

  28. Martins-de-Souza D., Proteome and transcriptome analysis suggests oligodendrocyte dysfunction in schizophrenia, J. Psychiatr. Res., 2010, 44, 149–156

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Martins-de-Souza.

About this article

Cite this article

Martins-de-Souza, D. Translational strategies to schizophrenia from a proteomic perspective. Translat.Neurosci. 3, 300–302 (2012). https://doi.org/10.2478/s13380-012-0031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0031-z

Keywords

Navigation