Skip to main content
Log in

Optimal control of a coefficient in modification Navier-Stokes equations

  • Published:
Mathematica Slovaca

Abstract

This paper deals with the optimal control of a coefficient in the modification of Navier-Stokes equations. Namely, the motion of the viscous incompressible fluid for a small gradient of velocity is described by Navier-Stokes equations where the coefficient of the kinematic viscosity ν is the positive constant (ν 0). For a greater gradient of velocity the coefficient of kinematic viscosity is a positive function of the gradient of velocity, that is ν (|∇u|). In our case ν (|∇u|) = ν 0 + ν 1 a (|∇u|) where ν 0, ν 1 ∈ ℝ+. The function a is positive and monotone and it is taken as a control variable. The existence of a solution of the optimal control problem is proved. Further, the approximation of the control problem by the finite-dimensional control problem is performed. The proof of the existence of a solution of that aproximate problem has been brought into light. Finally, the connection between the solution of the control problem and the solution of the approximate control problem is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BANKS, H. T.—REICH, S.—ROSEN, I. G.: Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems, Appl. Math. Optim. 24 (1991), 233–256.

    Article  MATH  MathSciNet  Google Scholar 

  2. BARBU, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Boston, MA. 1976.

    MATH  Google Scholar 

  3. CASAS, E.: Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Optim. 26 (1992), 21–37.

    Article  MATH  MathSciNet  Google Scholar 

  4. DANCHIN, R.: On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl. 12 (2005), 111–128.

    Article  MATH  MathSciNet  Google Scholar 

  5. FATTORINI, H. O.—SRITHARAN, S. S.: Optimal control problems with state constraints in fluid mechanics and combustion, Appl. Math. Optim. 38 (1998), 159–192.

    Article  MATH  MathSciNet  Google Scholar 

  6. GUTEMAN, S.: Identification of discontinuous of parameters in flow equations, SIAM J. Control Optim. 28 (1990), 1049–1060.

    Article  MathSciNet  Google Scholar 

  7. GUNTHER, M.—PROKERT, G.: On Stokes flow with variable and degenerate surface tension coefficients, NoDEA Nonlinear Differential Equations Appl. 12 (2005), 21–60.

    Article  MathSciNet  Google Scholar 

  8. LAMM, K. P.: Estimation of discontinuous coefficient in parabolic systems: application to reservior, SIAM J. Control Optim. 25 (1987), 18–37.

    Article  MATH  MathSciNet  Google Scholar 

  9. LADYZHENSKAYA, O. A.: The Mathematical Theory of Viscous Incompressible Flow, Nauka, Moskwa, 1970.

    Google Scholar 

  10. LIONS, J. L.: Quelques Methodes de Resolution non Linearies, Dunod, Paris, 1969.

    Google Scholar 

  11. KUNISCH, K.—BANKS, H. T.: Estimation Techniques for Distributed Paremeter Systems, Birkhauser, Boston-Basel-Berlin, 1989.

    Google Scholar 

  12. MARUŠIĆ-PALOKA, E.: Solvability of Navier-Stokes system with L 2 boundary data, Appl. Math. Optim. 41 (2000), 365–375.

    Article  MATH  MathSciNet  Google Scholar 

  13. PETERHOF, D.—SCHNEIDER, G.: A global existence result for a spatialy extended 3D Navier-Stokes problem with non-small initial data, NoDEA Nonlinear Differential Equations Appl. 7 (2000), 415–434.

    Article  MATH  MathSciNet  Google Scholar 

  14. SIMON, J.: On the existence of the pressure for solution of the variational Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999), 225–234.

    Article  MATH  MathSciNet  Google Scholar 

  15. SRITHARAN, S. S.: Deterministic and stohastic control of Navier-Stokes equations with linear, monotone, hyperviscosities, Appl. Math. Optim. 41 (2000), 255–308.

    Article  MATH  MathSciNet  Google Scholar 

  16. TEMAM, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Stud. Math. Appl. 2, North-Holland Publ. Company, Amsterdam-New York-Oxford, 1979.

    Google Scholar 

  17. ZIANE, M.: On the two-dimensional Navier-Stokes equations with the free boundery condition, Appl. Math. Optim. 38 (1998), 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  18. CUTLAND, N. J.—GRZESIAK, K.: Optimal control for two-dimensional stochastic Navier-Stokes equations, Appl. Math. Optim. 55 (2007), 61–91.

    Article  MATH  MathSciNet  Google Scholar 

  19. FREHSE, J.—MÁLEK, J.—STEINHAUER, M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAMJ. Math. Anal. 34 (2003), 1064–1083.

    Article  MATH  Google Scholar 

  20. MÁLEK, J.—NEČAS, J.—RŮŽIČKA, M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains, Adv. Differential Equations 4 (2005), 805–822.

    MATH  Google Scholar 

  21. KAPLICKÝ, P.—MÁLEK, J.—STARÁ, J.: Global-in-time Hőlder continuty of the velocity gradients for fluid with shear-dependent viscosities, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 175–195.

    Article  MATH  MathSciNet  Google Scholar 

  22. FRESHE, J.—MÁLEK, J.—STEINHAUER, M.: On existence results for fluids with shear dependent viscosity — unstedy flows. In: Partial Differential Equations (Praha, 1998). Chapman & Hall/CRC Res. Notes Math. 406, Chapman & Hall/CRC, Boka Raton, FL, 2000, pp. 121–129.

    Google Scholar 

  23. POKORNÝ, M.: Cauchy problem for the non-Newtonian viscous incompressible fluid, Appl. Math. 41 (1996), 169–201.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Bilić.

Additional information

Communicated by Sylvia Pulmannová

About this article

Cite this article

Bilić, N. Optimal control of a coefficient in modification Navier-Stokes equations. Math. Slovaca 60, 83–96 (2010). https://doi.org/10.2478/s12175-009-0169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s12175-009-0169-5

2000 Mathematics Subject Classification

Keywords

Navigation