Skip to main content
Log in

Improvement in dispersion tolerance of high-speed fiber optic transmission link by optimization of laser modulation

  • Published:
Opto-Electronics Review

Abstract

In this paper, the improvement in dispersion tolerance of high-speed transmission link with directly modulated laser is presented. The method is based on adopting the laser modulation (its amplitude and depth) accordingly to the dispersion of actual link. As it is shown, the tolerance of negative dispersion may be doubled and of positive increased even seven times. The simulations are proved by hardware experiment, in which the extended dispersion tolerance is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mohrdiek, H. Burkhard, F. Steinhagen, H. Hilmer, R. Losch, W. Schlapp, and R. Gobel, “10-Gb/s standard fiber transmission using directly modulated 1.55-μm quantum—well DFB lasers”, IEEE Photonic. Tech. L. 7, 1357–1359 (1995).

    Article  ADS  Google Scholar 

  2. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber”, IEEE Photonic. Tech. L. 13, 735–737 (2001).

    Article  ADS  Google Scholar 

  3. P. Krehlik, “Directly modulated lasers in chromatic dispersion limited 10 Gb/s links”, Electronics and Telecommunications Quarterly 53, 177–191 (2007).

    Google Scholar 

  4. P. Krehlik, “Directly modulated lasers in negative dispersion fiber links”, Opto-Electron. Rev. 15, 71–77 (2007).

    Article  ADS  Google Scholar 

  5. G.P. Agrawal and N.K. Dutta, Long-wavelength Semicon-ductor Lasers, Van Nostrand Reinhold, 1993.

  6. I. Tomkos, I. Roudas, A. Boskovic, R. Hesse, N. Antoniades, and R. Vodhanel, “Measurements of laser rate equations parameters for representative simulations of metropolitan-area transmission systems and networks”, Opt. Commun. 194, 109–129 (2001).

    Article  ADS  Google Scholar 

  7. P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber”, Opto-Electron. Rev. 14, 123–128 (2006).

    Article  ADS  Google Scholar 

  8. K. Sato, S. Kuwahara, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes”, J. Lightwave Techn. 23, 3790–3797 (2005).

    Article  ADS  Google Scholar 

  9. L. Bjerkan, A. Royset, L. Hafskjaer, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems”, J. Lightwave Techn. 14, 839–850 (1996).

    Article  ADS  Google Scholar 

  10. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, Wiley, 1991.

  11. G.P. Agrawal, Nonlinear Fiber Optics, Academic Press Inc., 2001.

  12. Corning MetroCor Fiber and its Applications in Metropolitan Networks, Corning Incorporated White Paper, 2000.

  13. ITU-T 959.1 Recommendation on Optical Transport Network Physical Layer Interfaces, ITU, 2003.

  14. IEEE 802.ae Amendment to Standard 803.3, IEEE, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Krehlik.

About this article

Cite this article

Krehlik, P. Improvement in dispersion tolerance of high-speed fiber optic transmission link by optimization of laser modulation. Opto-Electron. Rev. 17, 225–230 (2009). https://doi.org/10.2478/s11772-009-0006-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-009-0006-y

Keywords

Navigation