Skip to main content
Log in

Selectivity of the surface binding site (SBS) on barley starch synthase I

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was seen, which was found by mutational analysis to be essential for the activity of HvSSI on glycogen. We now show in binding studies using surface plasmon resonance that HvSSI has no detectable affinity for malto-triose and -tetraose, but clearly binds maltopentaose, -hexaose, -heptaose (M7) and β-cyclodextrin (β-CD) albeit with a measurable K D for only β-CD and M7. Moreover, an HvSSI SBS mutant F538A lost the ability to bind β-CD and maltooligosaccharides. This behaviour suggests that a chain in the α-glucan molecule (amylopectin) that is undergoing extension attaches itself at the SBS and that the active site itself, likely working on a different end chain, has low affinity for both substrate and product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADPGlc:

ADP-glucose

β-CD:

β-cyclodextrin

CAZy:

Carbohydrate Active enZyme database

DP:

degree of polymerisation

GBSS:

granule-bound starch synthase

HvSSI:

barley starch synthase I

M3:

maltotriose

M4:

maltotetraose

M5:

maltopentaose

M6:

maltohexaose

M7:

maltoheptaose

MOS:

maltooligosaccharides

RU:

resonance unit

PaGS:

Pyrococcus abyssi glycogen synthase

SBS:

surface binding site

SSI:

starch synthase I

SSII:

starch synthase II

SSIII:

starch synthase III

SSIV:

starch synthase IV

References

  • Baskaran S., Chikwana V.M., Contreras C.J., Davis K.D., Wilson W.A., Depaoli-Roach A.A., Roach P.J. & Hurley T.D. 2011. Multiple glycogen binding sites in eukaryotic glycogen synthase are required for high catalytic efficiency toward glycogen. J. Biol. Chem. 286: 33999–34006.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bozonnet S., Jensen M.T., Nielsen M.M., Aghajari N., Jensen M.H., Kramhøft B., Willemoës M., Trainer S., Haser R. & Svensson B. 2007. The’ pair of sugar tongs’ on the noncatalytic domain C of barley α-amylase participates in substrate binding and activity. FEBS J. 274: 5055–5067.

    Article  PubMed  CAS  Google Scholar 

  • Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233–D238.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cockburn D. & Svensson B. 2013. Surface binding sites in carbohydrate active enzymes: an emerging picture of structural and functional diversity, pp. 204–221. In: Rauter, P. & Lindhorst, T. (eds), Carbohydrate Chemistry vol. 39, Royal Society of Chemistry, Cambridge, United Kingdom.

    Google Scholar 

  • Commuri P.D. & Keeling P.L. 2001. Chain-length specificities of maize starch synthase I enzyme: studies of glucan affinity and catalytic properties. Plant J. 25: 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Crumpton-Taylor M., Pike M., Lu K.J., Hylton C.M., Feil R., Eicke S., Lunn J.E., Zeeman S.C. & Smith A.M. 2013. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion. New Phytol. 200: 1064–1075.

    Article  PubMed  CAS  Google Scholar 

  • Cuesta-Seijo J.A., Nielsen M.M., Marri L., Tanaka H., Beeren S.R. & Palcic M.M. 2013. Structure of starch synthase I from barley: insight into regulatory mechanisms of starch synthase activity. Acta Crystallogr. D Biol. Crystallogr. 69: 1013–1025.

    Article  PubMed  CAS  Google Scholar 

  • Cuyvers S., Dornez E., Delcour J.A. & Courtin C.M. 2011. Occurrence and functional significance of secondary carbohydrate binding sites in glycoside hydrolases. Crit. Rev. Biotechnol. 31: 93–107.

    Google Scholar 

  • Díaz A., Martínez-Pons C., Fita I., Ferrer J.C. & Guinovart J.J. 2011. Processivity and subcellular localization of glycogen synthase depend on a non-catalytic high affinity glycogenbinding site. J. Biol. Chem. 286: 18505–18514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita N., Yoshida M., Asakura N., Ohdan T. & Miyao A. 2006. Function and characterization of starch synthase I using mutants in rice. Plant Physiol. 140: 1070–1084.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fujita N., Yoshida M., Kondo T., Saito K., Utsumi Y., Tokunaga T., Nishi A., Satoh H., Park J.H., Jane J.L., Miyao A., Hirochika H. & Nakamura Y. 2007. Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol. 144: 2009–2023.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hanashiro I., Abe J. & Hizukuri S. 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr. Res. 283: 151–159.

    Article  CAS  Google Scholar 

  • Jeon J.S., Ryoo N., Hahn T.R., Walia H. & Nakamura Y. 2010. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 48: 383–392.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M.M., Bozonnet S., Seo E.S., Mótyán J.A., Andersen J.M., Dilokpimol A., Abou Hachem M., Gyémánt G., Naested H., Kandra L., Sigurskjold B.W. & Svensson B. 2009. Two secondary carbohydrate binding sites on the surface of barley α-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Biochemistry 48: 7686–7697.

    Article  PubMed  CAS  Google Scholar 

  • Pérez S. & Bertoft E. 2010. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch 62: 389–420.

    Article  Google Scholar 

  • Przylas I., Terada Y., Fujii K., Takaha T., Saenger W. & Sträter N. 2000. X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cyclic glucans. Eur. J. Biochem. 267: 6903–6913.

    PubMed  CAS  Google Scholar 

  • Robert X., Haser R., Mori H., Svensson B. & Aghajari N. 2005. Oligosaccharide binding to barley α-amylase 1. J. Biol. Chem. 280: 32968–32978.

    Article  PubMed  CAS  Google Scholar 

  • Roldán I., Wattebled F., Mercedes Lucas M., Delvallé D., Planchot V., Jiménez S., Pérez R., Ball S., D’Hulst C. & Mérida A. 2007. The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 49: 492–504.

    Article  PubMed  Google Scholar 

  • Rolland-Sabaté A., Sanchez T., Buléon A., Colonna P., Ceballos H., Zhao S.-S., Zhang P. & Dufour D. 2013. Molecular and supra-molecular structure of waxy starches developed from cassava (Manihot esculenta Crantz). Carbohydr. Polym. 92: 1451–1462.

    Article  PubMed  Google Scholar 

  • Sevcík J., Hostinová E., Solovicová A., Gasperík J., Dauter Z. & Wilson K.S. 2006. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J. 273: 2161–2171.

    Article  PubMed  Google Scholar 

  • Szydlowski N., Ragel P., Raynaud S., Mercedes Lucas M., Roldán I., Montero M., Munoz J., Ovecka M., Bahaji A., Planchot V., Pozueta-Romero J., D’Hulst C. & Mérida Á. 2009. Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21: 2443–2457.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Umemoto T., Yano M., Satoh H., Shomura A. & Nakamura Y. 2002. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor. Appl. Genet. 104: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Zeeman S.C., Kossmann J. & Smith A.M. 2010. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 61: 209–234.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X., Colleoni C., Ratushna V., Sirghie-Colleoni M., James M.G. & Myers A.M. 2004. Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Mol. Biol. 54: 865–879.

    Article  PubMed  CAS  Google Scholar 

  • Zhu F., Bertoft E., Källman A., Myers A.M. & Seetharaman K. 2013. Molecular structure of starches from maize mutants deficient in starch synthase III. J. Agric. Food Chem. 61: 9899–9907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birte Svensson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkens, C., Cuesta-Seijo, J.A., Palcic, M. et al. Selectivity of the surface binding site (SBS) on barley starch synthase I. Biologia 69, 1118–1121 (2014). https://doi.org/10.2478/s11756-014-0418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0418-0

Key words

Navigation