Skip to main content
Log in

Physiological adaptative characteristics of Imperata cylindrica for salinity tolerance

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Two populations of cogongrass [Imperata cylindrica (L.) Raeuschel], one from the saline regions of the Salt Range and the other from the non-saline regions of Faisalabad were assessed for salinity tolerance on the basis of some key morphological and physiological attributes. It was hypothesized that the tolerant population from the Salt Range must have developed some specific structural modifications, which are responsible for its better survival under high salinities. These adaptive components can be effectively used in modern technologies for improving degree of tolerance of other sensitive crops. The population from the Salt Range markedly excelled the Faisalabad population in terms of growth and physiological attributes measured in this study. The Faisalabad population of I. cylindrica was unable to survive at the highest salt level (200 mM NaCl). The tolerance of the Salt Range population to salt stress was found to be related to high accumulation of organic osmotica, particularly total free amino acids and proline as well as Ca2+ in the shoot. The distinctive structural modifications in the Salt Range population were found to be enhanced succulence, well-developed bulliform cells in leaves and smaller stomatal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel C.G. & Al-Rawi I.M.T. 2011. Anatomical alteration in response to irrigation and water stress in some legume crops. Am. J. Exp. Agri. 1: 231–264.

    Article  CAS  Google Scholar 

  • Ahmad F., Hameed M., Ashraf M., Ahmad M., Khan A., Nawaz T., Ahmad K.S. & Zafar M. 2012. Role of leaf epidermis in identification and differentiation of grasses in tribe Chlorideae (Poaceae) from Pakistan. J. Med. Plant Res. 6: 1955–1960.

    Google Scholar 

  • Alshammary S.F., Qian Y.L. & Wallner S.J. 2004. Growth response of four turfgrass species to salinity. Agric. Water Manag. 66: 97–111.

    Article  Google Scholar 

  • Arnon D.I. 1949. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ashraf M. & Harris P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3–16.

    Article  CAS  Google Scholar 

  • Ashraf M. & O’Leary J.W. 1996. Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress: Yield components and ion distribution. J. Agron. Crop Sci. 176: 91–101.

    Article  Google Scholar 

  • Ashraf M. McNeilly T. & Bradshaw A.D. 1986. The response of selected salt-tolerant and normal lines of four grass species to NaCl in sand culture. New Phytol. 104: 453–461.

    Article  CAS  Google Scholar 

  • Ashraf M., Mcneilly T. & Bradshaw A.D. 1989. The potential for evolution of tolerance to NaCl, CaCl2, MgCl2 and sea water in four grass species. New Phytol. 112: 245–254.

    Article  CAS  Google Scholar 

  • Ashraf M., Akhtar Y.K. & Sarwar G. 2002. Evaluation of arid and semi-arid ecotypes of guar (Cyamopsis tetragonoloba L.) for salinity (NaCl) tolerance. J. Arid Environ. 52: 473–482.

    Article  Google Scholar 

  • Ashraf M. 1994. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13: 17–42.

    Article  Google Scholar 

  • Ashraf M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199: 361–376.

    Article  Google Scholar 

  • Balsamo R.A., Willigen C.V., Bauer A.M. & Farrant J. 2006. Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann. Bot. 97: 985–991.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bates L.S., Waldren R.P. & Teare I.D. 1973. Rapid determination of proline for water stress studies. Plant Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Bohnert H.J. & Jensen R.G. 1996. Strategies for engineering water stress tolerance in plants. Trends Biotech. 14: 89–97.

    Article  CAS  Google Scholar 

  • Chaparzadeh N., Khavari-Nejad R.A. & Navari-Izzo F. 2003. Water relations and ionic balance in Calendula officinalis L. under salinity conditions. Agrochimica 47: 69–79.

    CAS  Google Scholar 

  • Chaudhary S.A. 1989. Grasses of Saudi Arabia, National Herbarium, National Agriculture and Water Research Center, Ministry of Agriculture and Water, Riadh, Kingdom of Saudi Arabia.

    Google Scholar 

  • Chaudhry A.A., Hameed M. & Ahamd R. 2001. Phyto-sociological studies in Chhumbi Surla Wildlife Sanctuary, Chakwal, Pakistan. I. Species diversity. Int. J. Agri. Biol. 3: 363–368.

    Google Scholar 

  • Cope T.A. 1982. Poaceae. In: Nasir E. & Ali S.I. (eds), Flora of Pakistan, University of Karachi, Karachi, Pakistan.

    Google Scholar 

  • Flowers T.J. & Colmer T.D. 2008. Salinity tolerance in halophytes. New Phytol. 179: 945–963.

    Article  PubMed  CAS  Google Scholar 

  • Gulzar S., Khan M.A. & Ungar I.A. 2003. Effects of salinity on growth, ionic content, and plant-water status of Aeluropus lagopoides. Comm. Soil. Sci. Plant Anal. 34: 1657–1668.

    Article  CAS  Google Scholar 

  • Hameed M. & Ashraf M. 2008. Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora 203: 683–694.

    Article  Google Scholar 

  • Hameed M., Naz N., Ahmad M.S.A., Islam-ud-Din Shazad & Riaz A. 2008. Morphological adaptations of some grasses from the Salt Range, Pakistan. Pak. J. Bot. 40: 1571–1578.

    Google Scholar 

  • Hameed M., Ashraf M. & Naz N. 2009. Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322: 229–238.

    Article  CAS  Google Scholar 

  • Hameed M., Ashraf M., Naz N. & F. Al-Qurainy. 2010. Anatomical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range Pakistan to salinity stress. I. Root and stem anatomy. Pak. J. Bot. 42: 279–289.

    Google Scholar 

  • Hameed M., Ashraf M. & Naz N. 2011. Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the Salt Range, Pakistan. Acta Physiol. Plant. 33: 1399–1409.

    Article  CAS  Google Scholar 

  • Hameed M., Ashraf M., Naz N., Nawaz T., Batool R., Ahmad M.S.A, Ahmad F. & Hussain M. 2013. Anatomical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. II. Leaf anatomy. Pak. J. Bot. 45(S1): (in press).

    Google Scholar 

  • Hernandez J.A. & Almansa M.S. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant. 115: 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Lacerda C.F., Cambraia J. & Oliva M.A. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ. Exp. Bot. 49: 107–120.

    Article  Google Scholar 

  • Mahmood S. & Athar H.R. 2003. Germination and growth of Panicum turgidum provenance under saline conditions. Pak. J. Biol. Sci. 6: 164–166.

    Article  Google Scholar 

  • Matumura M. & Nakajima N. 1988. Comparative ecology of intraspecific variants of the Chigaya, Imperata cylindrica var. koenigii (Alang-alang). III. Annual growth of the 3rd year communities originated from the seedlings. J. Jap. Soc. Grassland Sci. 34: 77–84.

    Google Scholar 

  • McKerrow W.S. Scotese C.R. & Brasier M.D. 1992. Early Cambrian continental reconstructions. J. Geol. Soc. 149: 599–606.

    Article  Google Scholar 

  • Moor S. & Stein W.H. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 176: 367–388.

    Google Scholar 

  • Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Munns R. 2011. Plant adaptations to salt and water stress: Differences and commonalities. Adv. Bot. Res. 57: 1–32.

    Article  CAS  Google Scholar 

  • Nawaz T., Hameed M., Ashraf M., Ahmad F., Ahmad M.S.A., Hussain M., Ahmad I., Younis A. & Ahmad K.S. 2012. Diversity and conservation status of economically important flora of the Salt Range, Pakistan. Pak. J. Bot. 44: 203–211.

    Google Scholar 

  • Naz N., Hameed M., Ashraf M., Al-Qurainy F. & Arshad M. 2010. Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity. Photosynthetica 48: 446–456.

    Article  Google Scholar 

  • Netondo G.W., Onyangoa J.C. & Beck E. 2004. Sorghum and salinity. I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Sci. 44: 797–805.

    Article  CAS  Google Scholar 

  • Qadir M., Noble A.D. & Oster J.D. 2005. Driving forces for sodium removal during phytoremediation of calcareous sodic soils. Soil Use Manag. 21: 173–180.

    Article  Google Scholar 

  • Qian Y.S., Wilhelm J. & Marcum K.B. 2001. Comparative responses of two Kentucky bluegrass cultivars to salinity stress. Crop Sci. 41: 1895–1900.

    Article  Google Scholar 

  • Rozema J., Pephagen I. & Sminia T. 1977. A light and electron microscopical study on the structure and function of salt gland of Glaux maritima L. New Phytol. 79: 665–671.

    Article  CAS  Google Scholar 

  • Santoso D., Adiningsih S. & Mutert E. 1997. Soil fertilitymanagement for reclamation of Imperatai grasslands by smallholder agroforestry. Agroforest System 36: 181–202.

    Article  Google Scholar 

  • Steel R.G.D., Torrie J.H. & Dickey D.A. 1997. Principles and Procedure of Statistics: A Biometrical Approach. McGraw Hill.

    Google Scholar 

  • Streeter J.G., Lohnes D.G. & Fioritto R.J. 2001. Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ. 24: 429–438.

    Article  CAS  Google Scholar 

  • Taji T., Ohsumi C. & Iuchi S. 2002. Important roles of drought and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Wolf B. 1982. An improved universal extracting solution and its use for diagnosing soil fertility. Comm. Soil Sci. Plant Anal. 13: 1005–1033.

    Article  CAS  Google Scholar 

  • Yiotis C., Manetas Y. & Psaras G.K. 2006. Leaf and stem anatomy of the drought deciduous mediterranean shrub Calicotome villosa (Poiret) link. (Leguminosae). Flora 210: 102–107.

    Article  Google Scholar 

  • Yoshiba Y., Kiyosue T. & Nakashima K. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095–1102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Hameed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, M., Ashraf, M., Naz, N. et al. Physiological adaptative characteristics of Imperata cylindrica for salinity tolerance. Biologia 69, 1148–1156 (2014). https://doi.org/10.2478/s11756-014-0417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0417-1

Key words

Navigation