Skip to main content
Log in

Profiling of differentially expressed genes in ectomycorrhizal fungus Pisolithus tinctorius responding to mycorrhiza helper Brevibacillus reuszeri MPt17

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

A cDNA library of the ectomycorrhizal (ECM) fungus Pisolithus tinctorius Pt2 after interaction with the mycorrhiza helper bacterium (MHB) Brevibacillus reuszeri MPt17 was constructed by suppression subtraction hybridization. Total RNA from B. reuszeri MPt17 exudates treated Pi. tinctorius Pt2 was used as a “tester” and total RNA from nonbacterial treated Pi. tinctorius Pt2 was used as a “driver.” Among the differentially expressed sequences, a BLASTX in the NCBI non-redundant protein sequence database revealed that 75% of the non-redundant sequences (147 out of 196) were highly similar to known proteins (E-value < e−5). Twelve sequences were annotated as mycelium development function combining with a potential functional categories using gene ontology. Quantitative real-time PCR analysis showed that all of the 3 symbiosis regulated acidic polypeptide genes were all up-regulated in the MPt17-treated Pt2. These results provide evidence that the MHB B. reuszeri MPt17 could significantly change the expression of symbiosis-related genes and genes in mycelium development in ECM fungus, and also support the hypothesis that the MHB functions as helper though promotion on fungal mycelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ECM:

ectomycorrhizal

ESTs:

expressed sequence tags

GO:

gene ontology

MHB:

mycorrhiza helper bacteria

MMN:

modified Melin-Norkrans

qRT-PCR:

quantitative real-time PCR

SSH:

suppression subtraction hybridization

TSB:

tryptic soy broth

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    CAS  PubMed  Google Scholar 

  • Anderson I.C., Chambers S.M. & Cairney J.W.G. 1998. Use of molecular methods to estimate the size and distribution of mycelial individuals of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol. Res. 102: 295–300.

    Article  Google Scholar 

  • Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41: D36–D42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernardo A., Bai G., Guo P., Xiao K., Guenzi A.C. & Ayoubi P. 2007. Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Funct. Integr. Genomics 7: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Birch P.R.J. & Kamoun S. 2000. Studying interaction transcriptomes: coordinated analyses of gene expression during plantmicroorganism interactions, pp. 77–82. In: New Technologies for Life Sciences: A Trends Guide. New York, Elsevier Science.

    Google Scholar 

  • Bonfante P. & Anca I.A. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63: 363–383.

    Article  CAS  PubMed  Google Scholar 

  • Burgess T., Dell B. & Malajczuk N. 1994. Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated onto Eucalyptus grandis W. Hill ex Maiden. New Phytol. 127: 731–739.

    Article  Google Scholar 

  • Cusano A.M., Burlinson M., Deveau A., Vion P., Uroz S., Preston G.M. & Frey-Klett P. 2011. Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ. Microbiol. Rep. 3: 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Deveau A., Brule C., Palin B., Champmartin D., Rubini P., Garbaye J., Sarniguet A. & Frey-Klett P. 2010. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ. Microbiol. Rep. 2: 560–568.

    Article  CAS  PubMed  Google Scholar 

  • Deveau A., Palin B., Delaruelle C., Peter M., Kohler A., Pierrat J.C., Sarniguet A., Garbaye J., Martin F. & Frey-Klett P. 2007. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol. 175: 743–755.

    Article  CAS  PubMed  Google Scholar 

  • Diatchenko L., Lau Y.F., Campbell A.P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E.D. & Siebert P.D. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93: 6025–6030.

    Article  CAS  PubMed  Google Scholar 

  • Duponnois R. & Garbaye J. 1991. Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in vitro and in glasshouse conditions. Ann. Sci. For. 48: 239–251.

    Article  Google Scholar 

  • Francis R. & Read D.J. 1995. Mutualism and antagonism in the mycorrhizal symbiosis with special reference to impacts on plant community structure. Can. J. Botany 73: S1301–S1309.

    Article  Google Scholar 

  • Frey-Klett P., Garbaye J. & Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytol. 176: 22–36.

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J. 1994. Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol. 128: 197–210.

    Article  Google Scholar 

  • Harms C., Käse M. & Hildebrandt A. 2002. Characterization of minute differences between genomes of strains of Penicillium nalgiovense using subtractive suppression hybridization without cloning. Lett. Appl. Microbiol. 35: 113–116.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U., Ouziad F., Marner F.J. & Bothe H. 2006. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol. Lett. 254: 258–267.

    Article  CAS  PubMed  Google Scholar 

  • Kataoka R., Taniguchi T. & Futai K. 2009. Fungal selectivity of two mycorrhiza helper bacteria on five mycorrhizal fungi associated with Pinus thunbergii. World J. Microbiol. Biotechnol. 25: 1815–1819.

    Article  Google Scholar 

  • Laurent P., Voiblet C., Tagu D., de Carvalho D., Nehls U., De Bellis R., Balestrini R., Bauw G., Bonfante P. & Martin F. 1999. A novel class of ectomycorrhiza-regulated cell wall polypeptides in Pisolithus tinctorius. Mol. Plant Microbe Interact. 12: 862–871.

    Article  CAS  PubMed  Google Scholar 

  • Li Q. 2012. Isolation of mycorrhiza helper bacteria (MHB) from rhizosphere soil from Pinus massoniana inoculated with ectomycorrhizal fungi. Master Degree Thesis, Nanjing Forestry University, Nanjing.

    Google Scholar 

  • Livak K. & Schmittgen D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Marx D.H. 1977. Tree host range and world distribution of the ectomycorrhizal fungus Pisolithus tinctorius. Can. J. Microbiol. 23: 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Molina R. & Palmer J.G. 1982. Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi, pp. 115–129. In: Schenk N.C. (ed.) Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul, MN, USA.

    Google Scholar 

  • Murat C., Zampieri E., Vallino M., Daghino S., Perotto S. & Bonfante P. 2011. Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes. FEMS Microbiol. Lett. 318: 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Nurmiaho-Lassila E.L., Timonen S., Haahtela K. & Sen R. 1997. Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can. J. Microbiol. 43: 1017–1035.

    Article  CAS  Google Scholar 

  • Poole E.J., Bending G.D., Whipps J.M. & Read D.J. 2001. Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol. 151: 743–751.

    Article  Google Scholar 

  • Riedlinger J., Schrey S.D., Tarkka M.T., Hampp R., Kapur M. & Fiedler H. 2006. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl. Environ. Microbiol. 72: 3550–3557.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozycki H., Kampert M., Strzelczyk E., Li C.Y. & Perry D.A. 1994. Effect of different soil bacteria on mycorrhizae formation in pine (Pinus sylvestris L.). Folia Forestalia Polonica Series A (Forestry) 36: 91–102.

    Google Scholar 

  • Sambrook J. & Russell D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Schrey S.D., Schellhammer M., Ecke M., Hampp R. & Tarkka M.T. 2005. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 168: 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Sheng J.M., Wu X.Q., Hou L.L. & Ying C.X. 2010. Isolation and identification of a MHB strain from the rhizosphere soil of Pinus thunbergi inoculated with Boletus edulis. Chin. J. Appl. Environ. Biol. 16: 701–704.

    CAS  Google Scholar 

  • Smith S.E. & Read D.J. 2008. Mycorrhizal Symbiosis, 3rd Ed. Academic Press, London.

    Google Scholar 

  • Varma A. 2008. Mycorrhiza, 3rd Ed. Springer, Berlin.

    Book  Google Scholar 

  • Wu X.Q., Hou L.L., Sheng J.M., Ren J.H., Zheng L., Chen D. & Ye J.R. 2012. Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biol. Fert. Soils 48: 385–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, AD., Wu, XQ., Shen, L. et al. Profiling of differentially expressed genes in ectomycorrhizal fungus Pisolithus tinctorius responding to mycorrhiza helper Brevibacillus reuszeri MPt17. Biologia 69, 435–442 (2014). https://doi.org/10.2478/s11756-014-0344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0344-1

Key words

Navigation