Skip to main content

Advertisement

Log in

Maximum radius of carbon dioxide baited trap impact in woodland: implications for host-finding by mosquitoes

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

CDC traps were used to determine the maximum radius of carbon dioxide attraction within forest habitat (a forest plant community with Carpino betuli-Quercetum roburis). A central CDC trap with dry ice (CO2) was set as the source of attractant (Ck). Around Ck trap two circles (A and B) of CDC traps without attractants were placed. Circle A was constituted of 6 CDC traps and Circles B with 12 CDC traps. Radius from Circle A and B to the Ck trap were used to determine CO2 maximum range. During the experiment, the average emissions of CO2 were 0.08 to 0.1 g s−1. Regarding the data, optimal radius attraction where CO2 was affected on mosquitoes was between 55 and 70 m from the source. Results propose that the distance between traps should be greater than 140 m, to ensure the absence of bias by each of the traps. Changes in CO2 maximum concentration and wind velocity directly affected the catch of different species. The number of Ochlerotatus sticticus collected was positively correlated with wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akima H., Gebhardt A. & Petzold T. 2009. Akima: Interpolation of irregularly spaced data. R package version 0.5-4. http://CRAN.R-project.org/package=akima

    Google Scholar 

  • Becker N., Zgomba M., Petrić D. & Ludwig M. 1995. Comparison of carbon dioxide, octenol and a host-odour as mosquito attractants in the Upper Rhine Valley, Germany. Med. Vet. Entomol. 9(4): 377–380. DOI: 10.1111/j.1365-2915.1995.tb00008.x

    Article  CAS  PubMed  Google Scholar 

  • Becker N., Zgomba M., Petrić D., Dahl C., Boase C., Lane J. & Kaiser A. 2003. Mosquitoes and their Control. Kluwer Academic/Plenum Publishers, New York, 498 pp. ISBN: 0306473607, 9780306473609

    Book  Google Scholar 

  • Brady J., Packer M.J. & Gibson G. 1990. Odour plume shape and host finding by tsetse. Int. J. Trop. Insect Sci. 11(3): 377–384. DOI: 10.1017/S1742758400012807

    Article  Google Scholar 

  • Burkett D.A., Lee W.J., Lee K.W., Kim H.C., Lee H.I., Lee J.S., Shin E.H., Wirtz R.A., Cho H.W. & Claborn D.M. 2001. Light, carbon dioxide, and octenol-baited mosquito trap and host-seeking activity evaluations for mosquitoes in a malarious area of the Republic of Korea. J. Am. Mosq. Control. Assoc. 17(3): 196–205. PMID: 14529088

    CAS  PubMed  Google Scholar 

  • Clements A.N. 1999. The Biology of the Mosquitoes. Vol. 2. Sensory Reception and Behaviour. CABI Publishing, Oxon, UK, 740 pp. ISBN: 0-85199-313-3

    Google Scholar 

  • Cooperband M.F. & Cardé R.T. 2006. Comparison of plume structures of carbon dioxide emitted from different mosquito traps. Med. Vet. Entomol. 20(1): 1–10. DOI: 10.1111/j.1365-2915.2006.00614.x

    Article  PubMed  Google Scholar 

  • Cummings R.F. & Meyer R.P. 1999. Comparison of the physical parameters of four types of modified CDC-style traps in reference to their mosquito collecting efficiency. Proc. Calif. Mosq. Vector Control Assoc. 67: 38–44.

    Google Scholar 

  • Dekker T., Geier M. & Cardé R.T. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208: 2963–2972. DOI: 10.1242/jeb.01736

    Article  PubMed  Google Scholar 

  • Eiras A.E. & Jepson P.C. 1991. Host location by Aedes aegypti (Diptera: Culicidae): a wind tunnel study of chemical cues. Bull. Entomol. Res. 81(2): 151–160. DOI: 10.1017/S0007485300051221

    Article  Google Scholar 

  • Elkinton J.S. & Cardé R.T. 1984. Odour dispersion, pp. 73–88. In: Bell W.J. & Cardé R.T. (eds), Chemical Ecology of Insects, Chapman and Hall, London, 524 pp. ISBN: 0-412-23260-X

    Chapter  Google Scholar 

  • Geier M., Sass H. & Boeckh J. 1996. A search for components in human body odour that attract females of Aedes aegypti, pp. 132–144. In: Bock G.R. & Cardew G. (eds), Olfaction in Mosquito-Host Interaction, Ciba Foundation Symposium 200, John Wiley and Sons Ltd., New York, 331 pp. ISBN: 0471963623

    Google Scholar 

  • Gillies M.T. 1980. The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull. Entomol. Res. 70: 525–532. DOI: 10.1017/s0007485300007811

    Article  Google Scholar 

  • Gillies M.T. & Wilkes T.J. 1970. The range of attraction of single baits for some West African mosquitoes. Bull. Entomol. Res. 60: 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Gillies M.T. & Wilkes T.J. 1981. Field experiments with a wind tunnel on the flight speed of some West African mosquitoes (Diptera: Culicidae). Bull. Entomol. Res. 71: 65–70.

    Article  Google Scholar 

  • Grant A.J. & O’Connell R.J. 1996. Electrophysiological responses from receptor neurons in mosquito maxillary palp sensilla, pp. 233–248 In: Bock G.R. & Cardew G. (eds), Olfaction in Mosquito-Host Interaction, Ciba Foundation Symposium 200, John Wiley and Sons Ltd., New York, 331 pp. ISBN: 0471963623

    Google Scholar 

  • Gutsevich A.V., Monchadskii A.S. & Shtakel’berg A.A. 1976. Fauna of the U.S.S.R. Diptera. Volume 3, No. 4. Mosquitoes Family Culicidae.Academy of Sciences of the USSR, Zoological Institute, Keter Publishing House, Jerusalem, 408 pp.

    Google Scholar 

  • Jansen C.C., Zborowski P., Ritchie S.A. & Van den Hurk A.F. 2009. Efficacy of bird-baited traps placed at different heights for collecting ornithophilic mosquitoes in eastern Queensland, Australia. J. Aust. Entomol. 48(1): 53–59. DOI: 10.1111/j.1440-6055.2008.00671.x

    Article  Google Scholar 

  • Kaissling K.E. & Kramer E. 1990. Sensory basis of pheromonemediated orientation in moths. Verh. Dtsch. Zool. Gesell. 83(2): 109–131.

    Google Scholar 

  • Mboera L.E.G., Knols B.G.J., Braks M.A.H. & Takken W. 2000. Comparison of carbon dioxide-baited trapping systems for sampling outdoor mosquito populations in Tanzania. Med. Vet. Entomol. 14(3): 257–263. DOI: 10.1046/j.1365-2915.2000.00239.x

    Article  PubMed  Google Scholar 

  • Mboera L.E.G. & Takken W. 1997. Carbon dioxide chemotropism in mosquitoes (Diptera: Culicidae) and its potential in vector surveillance and management programmes. Rev. Med. Vet. Entomol. 85: 355–368.

    Google Scholar 

  • Murlis J. 1997. Odour plumes and the signal they provide, pp. 221–231. In: Cardé R.T. & Minks A. (eds), Insect Pheromone Research: New Directions, Part III, Chapman and Hall, New York. ISBN: 978-1-4613-7926-3

    Chapter  Google Scholar 

  • Murlis J., Elkinton J.S. & Cardé R.T. 1992. Odour plumes and how insect use them. Annu. Rev. Entomol. 37: 505–532. DOI: 10.1146/annurev.en.37.010192.002445

    Article  Google Scholar 

  • Murlis J. & Jones C.D. 1981. Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6(1): 71–86. DOI: 10.1111/j.1365-3032.1981.tb00262.x

    Article  Google Scholar 

  • Pfuntner A.R., Reisen W.K. & Dhillon M.S. 1988. Vertical distribution and response of Culex mosquitoes to differing concentrations of carbon dioxide. Proceedings and papers of the annual conference of the California Mosquito and Vector Control Association 56: 69–74.

    Google Scholar 

  • Phelps R.J. & Vale G.A. 1976. Studies on the local distribution and on the methods of host location of some Rhodesian Tabanidae (Diptera). J. Entomol. Soc. S. Africa 39: 67–81.

    Google Scholar 

  • R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0, http://www.R-project.org.

    Google Scholar 

  • Reisen W.K., Meyer R.P., Cummings R.F. & Delgado O. 2000. Effects of trap design and CO2 presentation on the measurement of adult mosquito abundance using centres for disease control style miniature light traps. J. Am. Mosq. Control Assoc. 16(1): 13–18. PMID: 10757485

    CAS  PubMed  Google Scholar 

  • Richards P.W. 1996. The tropical rain forest. An Ecological Study. 2nd ed., Cambridge University Press, 600 pp. ISBN: 9780521421942

    Google Scholar 

  • Ritchie S.A., Zborowski P., Banks D., Walsh I. & Davis J. 2008. Efficacy of novel updraft traps for collection of mosquitoes in Cairns, Australia. J. Am. Mosq. Control Assoc. 4: 520–527. PMID: 19181059

    Article  Google Scholar 

  • Rueda L.M., Harrison B.A., Brown J.S., Whitt P.B., Harrison R.L. & Gardner R.C. 2001. Evaluation of 1-octen-3-ol, carbon dioxide, and light as attractants for mosquitoes associated with two distinct habitats in North Carolina. J. Am. Mosq. Control Assoc. 17(1): 61–66. PMID: 11345421

    CAS  PubMed  Google Scholar 

  • Schaffner F., Angel G., Geoffroy B., Hervy J.P., Rhaiem A. & Brunhes J. 2001. Les moustiques d’Europe. Logiciel d’identification et d’enseignement. CD-ROM, Institut de Recherche pour le Développement (IRD). Paris: Editions & EID Méditerranée.

    Google Scholar 

  • Service M.W. 1976. Mosquito Ecology: Field Sampling Techniques. Applied Science Publishers Ltd, London, 583 pp. ISBN: 0853346585, 9780853346586

    Google Scholar 

  • Snow W.F. 1980. Field estimates of the flight speed of some West African mosquitoes. Ann. Trop. Med. Parasitol. 74(2): 239–242. PMID: 6108094

    CAS  PubMed  Google Scholar 

  • Takken W. & Knols B.G.J. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44: 131–157. DOI: 10.1146/annurev.ento.44.1.131

    Article  CAS  PubMed  Google Scholar 

  • Torr S.J. 1990. Dose-responses of tsetse flies (Glossina) to carbon dioxide, acetone and octenol in the field. Physiol Entomol. 15(1): 93–103. DOI: 10.1111/j.1365-3032.1990.tb00496.x

    Article  CAS  Google Scholar 

  • Vale G.A. 1977. The flight of tsetse flies (Diptera: Glossinidae) to and from a stationary ox. Bull. Entomol. Res. 67(2): 297–303. DOI: 10.1017/S0007485300011111

    Article  Google Scholar 

  • Vale G.A. 1980. Field studies of the responses of tsetse flies (Glossinidae) and other Diptera to carbon dioxide, acetone and other chemicals. Bull. Entomol. Res. 70(4): 563–570. DOI: 10.1017/S0007485300007860

    Article  CAS  Google Scholar 

  • van den Hurk A.E., Montgomery B.L., Zborowski P., Beebe N.W., Cooper R.D. & Ritchie S.A. 2006. Does 1-octen-3-ol enhance trap collections of Japanese encephalitis virus mosquito vectors in northern Australia? Journal of the American Mosquito Control Association 22(1): 15–21. DOI: 10.2987/8756-971X(2006)22[15:DOETCO]2.0.CO;2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željka Jeličić Marinković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinković, Ž.J., Hackenberger, B.K. & Merdić, E. Maximum radius of carbon dioxide baited trap impact in woodland: implications for host-finding by mosquitoes. Biologia 69, 522–529 (2014). https://doi.org/10.2478/s11756-014-0330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0330-7

Key words

Navigation