Skip to main content
Log in

An improved method to extract DNA from mango Mangifera indica

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

High quality genomic DNA is the first step in the development of DNA-based markers for fingerprinting and genetic diversity of crops, including mango (Mangifera indica L.), a woody perennial. Poor quality genomic DNA hinders the successful application of analytical DNA-based tools. Standard protocols for DNA extraction are not suitable for mango since the extracted genomic DNA often contains secondary metabolites that interfere with analytical applications. In this study, we employed an additional step to remove polysaccharides, polyphenols and secondary metabolites from genomic DNA extracted from young or mature leaf tissue; then a modified traditional cetyl trimethyl ammonium bromide (CTAB) method was applied. The use of 0.4 M glucose improved DNA quality and avoided contamination and browning by polyphenolics, relative to the traditional CTAB method. This is an easy and efficient method for genomic DNA extraction from both young and mature leaves of mango. The isolated DNA was free of polysaccharides, polyphenols, RNA and other major contaminants, as judged by its clear colour, its viscosity, A260/A280 ratio and suitability for PCR-based reactions. This modified protocol was also used to extract high quality genomic DNA from other woody perennials, including walnut, guava, lychee, pear, grape and sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTAB:

cetyl trimethyl ammonium bromide

EDTA:

ethylenediamine tetraacetic acid

ISSR:

inter simple sequence repeat

PVP:

polyvinylpyrrolidone

TAE:

Tris acetate-EDTA

TE:

Tris-EDTA

References

  • Azmat M.A., Khan I.A., Cheema H.M.N., Rajwana I.A., Khan A.S. & Khan A.A. 2012. Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica L. J. Zhejiang Univ. Sci. B (Biomed. Biotech.) 13: 239–243.

    Article  CAS  Google Scholar 

  • Clark M.S. 1997. Plant Molecular Biology — A Laboratory Manual. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Couch J.A. & Fritz P.J. 1990. Isolation of DNA from plants high in polyphenolics. Plant Mol. Biol. Rep. 8: 8–12.

    Article  CAS  Google Scholar 

  • Dabo S.M., Mitchell E.D. & Melcher U. 1993. A method for the isolation of nuclear DNA from cotton (Gossypium) leaves. Anal. Biochem. 210: 34–38.

    Article  CAS  PubMed  Google Scholar 

  • Dawson C.R. & Magee R.J. 1955. Plant tyrosinase (polyphenol oxidase). Methods Enzymol. 2: 817–827.

    Article  Google Scholar 

  • Davenport T.L. & Nunez-Elisea R. 1997. Reproductive physiology, pp. 69–146. In: Litz R.E. (ed.), The Mango: Botany, Production and Uses, CAB International, Wallingford, UK.

    Google Scholar 

  • Davis T.M., Yu H., Haigis K.M. & McGowan P.J. 1995. Template mixing: a method of enhancing detection and interpretation of co dominant RAPD markers. Theor. Appl. Genet. 91: 582–588.

    CAS  PubMed  Google Scholar 

  • Dellaporta S.L., Wood J. & Hicks J.B. 1983. A plant minipreparation; version 2. Plant Mol. Biol. Rep. 1: 19–21.

    Article  CAS  Google Scholar 

  • Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Doyle J.J. & Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Fang G., Hammar S. & Grumet R. 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13: 52–54.

    CAS  PubMed  Google Scholar 

  • Guillemaut P. & Marchal-Drouard L. 1992. Isolation of plant DNA: a fast, inexpensive, and reliable method. Plant Mol. Biol. Rep. 10: 60–65.

    Article  CAS  Google Scholar 

  • He X.H., Li Y.R., Guo Y.Z., Ou S.J. & Li R.B. 2007. Identification of closely related mango cultivars by ISSR. Guihaia 27: 44–47.

    CAS  Google Scholar 

  • Howland D.E., Oliver R.P. & Davy A.J. 1991. A method of extraction of DNA from Birch. Plant Mol. Biol. Rep. 9: 340–344.

    Article  CAS  Google Scholar 

  • John M.E. 1992. An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Res. 20: 2381.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kashkush K., Fang J., Tomer J., Hillel J. & Lavi U. 2001. Cultivar identification and genetic map of mango Mangifera indica. Euphytica 122: 129–136.

    Article  CAS  Google Scholar 

  • Katterman F.R.H. & Shattuck V.I. 1983. An effective method of DNA isolation from the mature leaves of Gossypium species that contains large amount of phenolics, terpenoids and tannins. Prep. Biochem. 13: 347–359.

    CAS  PubMed  Google Scholar 

  • Kotchoni S.O., Gachomo E.W., Betiku E. & Shonukan O.O. 2003. A home made kit for plasmid DNA mini preparation. Afr. J. Biotechnol. 2: 88–90.

    CAS  Google Scholar 

  • Lodhi M.A., Daly M.A., Weeden N.F. & Reisch B.I. 1995. A molecular marker based linkage map of Vitis. Genome 38: 786–794.

    Article  CAS  PubMed  Google Scholar 

  • Loomis M.D. 1974. Overcoming problems of phenolics and quinines in the isolation of plant enzymes and organelles. Methods Enzymol. 31: 528–544.

    Article  CAS  PubMed  Google Scholar 

  • Malabadi R.B., Teixeira da Silva J.A., Nataraja K., Vijaykumar S. & Mulgund G.S. 2011. Induction of somatic embryogenesis in mango (Mangifera indica L.). Int. J. Biol. Technol. 2: 12–18.

    CAS  Google Scholar 

  • Manoj K., Tushar B. & Sushama C. 2007. Isolation and purification of genomic DNA from black plum (Eugenia jambolana Lam.) for analytical applications. Int. J. Biotechnol. Biochem. 3: 49–55.

    Google Scholar 

  • Moller E.M., Bahnweg G., Sandermann H. & Geiger H.H. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissues. Nucleic Acids Res. 20: 6115–6116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Padmalatha K. & Prasad M.N.V. 2006. Optimization of DNA isolation and PCR protocol for RAPD analysis of selected medicinal and aromatic plants of conservation concern from peninsular India. Afr. J. Biotechnol. 5: 230–234.

    CAS  Google Scholar 

  • Paterson A.H., Brubacker C.L. & Wendel J.F. 1993. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol. Biol. Rep. 8: 122–127.

    Article  Google Scholar 

  • Permingeat H.R., Romagnoli M.V. & Vallejos R.H. 1998. A simple method for isolating high yield and quality DNA from cotton (Gossypium hirsutum L.). Plant Mol. Biol. Rep. 16: 1–6.

    Article  Google Scholar 

  • Pirttila A.M., Hirsikorpi M., Jaakola T.K.L. & Hohtola A. 2001. DNA isolation method for medicinal and aromatic plants. Plant Mol. Biol. Rep. 19: 273–278.

    Article  Google Scholar 

  • Porebski S., Balley L.G. & Baum B.R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharides and polyphenols component. Plant Mol. Biol. Rep. 15: 8–15.

    Article  CAS  Google Scholar 

  • Puchooa D. 2004. A simple rapid and efficient method for the extraction of genomic DNA from lychee Sonn. Afr. J. Biotechnol. 3: 253–255.

    CAS  Google Scholar 

  • Roy S.C. & Chattopadhyay A. 2011. Evaluation of genetic diversity in mango germplasm resources using RAPD markers and characterization of cultivar Guti based on 18S rRNA gene sequence. Indian J. Genet. Plant Breed. 71: 254–261.

    CAS  Google Scholar 

  • Sharma A.D., Gill P.K. & Singh P. 2002. DNA isolation from dry and fresh samples of polysaccharide-rich plants. Plant Mol. Biol. Rep. 20: 415.

    Article  Google Scholar 

  • Singh R.N. 1996. Mango. New Delhi, ICAR, 134 pp.

    Google Scholar 

  • Teixeira da Silva J.A. 2005. Effectiveness of DNA extraction protocols for horticultural and physiological model plant analyses. Int. J. Bot. 1: 93–99.

    Article  CAS  Google Scholar 

  • Teixeira da Silva J.A. & Tanaka M. 2006. Analysis of suitability of DNA extraction protocols for somaclonal variation analysis in in vitro-cultured orchids. Acta Hort. 725: 203–209.

    CAS  Google Scholar 

  • Ukoskit K. 2007. Development of microsatellite markers in mango Mangifera indica L. Thummasat Int. J. Sci. Technol. 12: 1–7.

    Google Scholar 

  • Yamanaka N., Hasran M., Xu D.H., Tsunematsu H., Idris S. & Ban T. 2006. Genetic relationship and diversity of four Mangifera species revealed through AFLP analysis. Genet. Resources Crop Evol. 53: 949–954.

    Article  CAS  Google Scholar 

  • Zhang J.F. & McDonald J.S. 2000. Economical and rapid method for extracting cotton genomic DNA. J. Cotton Sci. 4: 193–201.

    CAS  Google Scholar 

  • Zidani S., Ferchichi A. & Chaieb M. 2005. Genomic DNA extraction method from pearl millet (Pennisetum glaucum) leaves. Afr. J. Biotechnol. 4: 862–866.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Cheng.

Additional information

Electronic supplementary material. The online version of this article (DOI:10.2478/s11756-013-0311-2) contains supplementary material, which is available to authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uddin, M.S., Sun, W., He, X. et al. An improved method to extract DNA from mango Mangifera indica . Biologia 69, 133–138 (2014). https://doi.org/10.2478/s11756-013-0311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0311-2

Key words

Navigation