Skip to main content
Log in

Comprehensive characterization of human adipose tissue-derived stem cells expanded in vitro

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Adipose tissue seems to be a rich and safe source of mesenchymal stem cells (MSCs). The present study was aimed to investigate the biological and morphological characteristics of human adipose tissue-derived stem cells (ATSCs). Light and transmission electron microscopy were used. Course of proliferation was analyzed by growth curve. Expression of surface antigens was assessed by flow cytometry. Chondrogenic potential was assessed by immunohistochemistry. Obtained results showed morphology typical of fibroblastoid cells. TEM analysis proved ultrastructural morphology similar to MSCs from other sources. ATSCs reflected their proteosynthetic and metabolic activity. Each cell had irregular shape of nucleus with noticeable nucleoli. Abundant cisterns of rough endoplasmic reticulum were present in their cytoplasm. Karyotype mapping showed normal count of human chromosomes (46,XX). The growth curve revealed high capability for proliferation and population doubling time was 27.36 hours. ATSCs were positive for CD13, CD29, CD44, CD73, CD90, CD105 and CD106, but did not express CD14, CD34, CD45 and HLA-DR. It was also proved that ATSCs underwent chondrogenic differentiation in vitro. On the basis of obtained results it should be emphasized that ATSCs are typical MSCs and after further investigations they may be used in tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamkov M., Kajo K., Vybohova D., Krajcovic J., Stuller F. & Rajcani J. 2012. Correlations of survivin expression with clinicomorphological parameters and hormonal receptor status in breast ductal carcinoma. Neoplasma 59(1): 30–37. DOI: 10.4149/neo 2012 004

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni E., Lopa S., de Girolamo L., Stanco D. & Brini A.T. 2009. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res. 338(3): 401–411. DOI: 10.1007/s00441-009-0883-x

    Article  PubMed  Google Scholar 

  • Barry F.P., Murphy J.M., English K. & Mahon BP. 2005. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev. 14(3): 252–265. DOI:10.1089/scd.2005.14.252

    Article  CAS  PubMed  Google Scholar 

  • Caplan A.I. 1991. Mesenchymal stem cells. J. Orthop. Res. 9(5): 641–650. DOI: 10.1002/jor.1100090504

    Article  CAS  PubMed  Google Scholar 

  • Danisovic L., Varga I., Polak S., Bajcikova B., Adamkov M. & Vojtassak J. 2011. Biological and morphological characterization of in vitro expanded human muscle-derived stem cells. Tsitologiia 53(6): 482–486 PMID: 21870504

    CAS  PubMed  Google Scholar 

  • Delorme B. & Charbord P. 2007. Culture and characterization of human bone marrow mesenchymal stem cells. Methods Mol. Med. 140: 67–81.

    Article  CAS  PubMed  Google Scholar 

  • Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D.J. & Horwitz E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8(4): 315–317. DOI: 10.1080/14653240600855905

    CAS  Google Scholar 

  • Gastaldi G., Asti A., Scaffino M.F., Visai L., Saino E., Cometa A.M. & Benazzo F. 2010. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. J. Biomed. Mater. Res. A. 94A(3): 790–799. DOI: 10.1002/jbm.a.32721

    CAS  Google Scholar 

  • Glotzbach J.P., Wong V.W., Gurtner G.C. & Longaker M.T. 2011. Regenerative medicine. Curr. Probl. Surg. 48(3): 148–212. DOI:10.1067/j.cpsurg.2010.11.002

    Article  PubMed  Google Scholar 

  • Halasova E., Adamkov M., Matakova T., Kavcova E., Poliacek I. & Singliar A. 2010. Lung cancer incidence and survival in chromium exposed individuals with respect to expression of anti-apoptotic protein survivin and tumor suppressor P53 protein. Eur. J. Med. Res. 15(Suppl 2): 55–59.

    PubMed  Google Scholar 

  • Hoffman J.A. & Merrill B.J. 2007. New and renewed perspectives on embryonic stem cell pluripotency. Front. Biosci. 12: 3321–3332. DOI: 10.2741/2315

    Article  CAS  PubMed  Google Scholar 

  • Johnstone B., Hering T.M., Caplan A.I., Goldberg V.M. & Yoo J.U. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell. Res. 238(1): 265–272. DOI:10.1006/excr.1997.3858

    Article  CAS  PubMed  Google Scholar 

  • Karaöz E., Demircan P.C., Sağlam O., Aksoy A., Kaymaz F. & Duruksu G. 2011. Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem. Cell. Biol. 136(4): 455–473. DOI: 10.1007/s00418-011-0858-3

    Article  PubMed  Google Scholar 

  • Karaöz E., Doğan B.N., Aksoy A., Gacar G., Akyüz S., Ayhan S., Genç Z.S., Yürüker S., Duruksu G., Demircan P.C. & Sariboyaci A.E. 2010. Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem. Cell. Biol. 133(1): 95–112. DOI: 10.1007/s00418-009-0646-5

    Article  PubMed  Google Scholar 

  • Kern S., Eichler H., Stoeve J., Klüter H. & Bieback K. 2006. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5): 1294–1301. DOI:10.1634/stemcells.2005-0342

    Article  CAS  PubMed  Google Scholar 

  • Kestendjieva S., Kyurkchiev D., Tsvetkova G., Mehandjiev T., Dimitrov A., Nikolov A. & Kyurkchiev S. 2008. Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell. Biol. Int. 32(7): 724–732. DOI:10.1016/j.cellbi.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  • Lovati A.B., Corradetti B., Lange Consiglio A., Recordati C., Bonacina E., Bizzaro D. & Cremonesi F. 2011. Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Vet. Res. Commun. 35(2): 103–121. DOI: 10.1007/s11259-010-9457-3

    Article  PubMed  Google Scholar 

  • Mihu C.M., Rus Ciucă D., Soritău O., Suşman S. & Mihu D. 2009. Isolation and characterization of mesenchymal stem cells from the amniotic membrane. Rom. J. Morphol. Embryol. 50(1): 73–77.

    PubMed  Google Scholar 

  • Mizuno H., Tobita M. & Uysal A.C. 2012. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30(5): 804–310. DOI: 10.1002/stem.1076

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli G., Tazzari P., Ricci F., Vaselli C., Buzzi M., Conte R., Orrico C., Foroni L., Stella A., Alviano F., Bagnara G.P. & Lucarelli E. 2007. Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta. Ultrastruct. Pathol. 31(1): 23–31. DOI:10.1080/01913120601169477

    Article  PubMed  Google Scholar 

  • Patterson M., Chan D.N., Ha I., Case D., Cui Y., Van Handel B., Mikkola H.K. & Lowry W.E. 2012. Defining the nature of human pluripotent stem cell progeny. Cell Res. 22(1): 178–193. DOI:10.1038/cr.2011.133

    Article  CAS  PubMed  Google Scholar 

  • Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S. & Marshak D.R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–147. DOI: 10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  • Rojewski M.T., Weber B.M. & Schrezenmeier H. 2008. Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus. Med. Hemother. 35(3): 168–184. DOI: 10.1159/000129013

    Article  PubMed  Google Scholar 

  • Røsland G.V., Svendsen A., Torsvik A., Sobala E., McCormack E., Immervoll H., Mysliwietz J., Tonn J.C., Goldbrunner R., Lønning P.E., Bjerkvig R. & Schichor C. 2009. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer. Res. 69(13): 5331–5339. DOI: 10.1158/0008-5472.CAN-08-4630

    Article  PubMed  Google Scholar 

  • Varga I., Hollý D., Vojtaššák J., Böhmer D., Polák Š. & Danišovič Ľ. 2011. Morphological characterization of in vitro expanded human dental pulp-derived stem cells. Biologia 66(4): 706–711. DOI: 10.2478/s11756-011-0069-3

    Article  Google Scholar 

  • Yang X.F., He X., He J., Zhang L.H., Su X.J., Dong Z.Y., Xu Y.J., Li Y. & Li Y.L. 2001. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J. Biomed. Sci. 18: 59. DOI: 10.1186/1423-0127-18-59

    Article  Google Scholar 

  • You Q., Tong X., Guan Y., Zhang D., Huang M., Zhang Y. & Zheng J. 2009. The biological characteristics of human third trimester amniotic fluid stem cells. J. Int. Med. Res. 37(1): 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P. & Hedrick M.H. 2002. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13(12): 4279–4295. DOI: 10.1091/mbc.E02-02-0105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľuboš Danišovič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danišovič, Ľ., Kuniaková, M., Varchulová-Nováková, Z. et al. Comprehensive characterization of human adipose tissue-derived stem cells expanded in vitro . Biologia 68, 747–753 (2013). https://doi.org/10.2478/s11756-013-0201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0201-7

Key words

Navigation