Skip to main content

Advertisement

Log in

Immunoenhancing property of dietary un-denatured whey protein derived from three camel breeds in mice

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Data have demonstrated that whey protein (WP) enhances the immune system. The aim of this study was to investigate and compare the effects of WP from three camel breeds on oxidative stress, blood lipid profile and the cytokine levels. Seventy five male mice were randomly split into five groups. The first served as a control group. The second, the third and the fourth groups were orally administrated the WP from Majaheim, Maghateer and Soffer camel breeds, respectively, at a dose of 100 mg/kg mouse body weight. The fifth group was supplemented with bovine serum albumin (BSA). Results showed similar electrophoretic patterns of the three whey proteins. WP was found to significantly inhibit the hydroperoxide and the Reactive Oxygen Species (ROS) in leukocytes, liver and skin as well as the blood cholesterol level in a time dependent manner. A significant enhancement of glutathione was revealed in WP groups. Furthermore, WP was found to significantly elevate the IL-2 with a significant time dependent enhance of IL-8. On contrast, a significant lowering effect of whey proteins on the pro-inflammatory cytokines, IL-1α, IL-1β, IL-6 and IL-10 was detected. Moreover, a mitogenic activity of WP was observed on the lymphocytes. Non-significant changes were observed in AST, ALT, creatinine and glucose level. These findings suggest that WP significantly improved the levels of the oxidative markers and the immune functions without any difference in the bioactivities of the three studied whey proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALT:

Alanine Aminotransferase

AST:

Aspartate Aminotransferase

IL:

Interleukin

PBMCs:

Peripheral Blood Mononuclear Cells

BSA:

Bovine serum albumin

ROS:

Reactive Oxygen Species

SDS-PAGE:

Sodium dodecyl sulfatepolyacrylamide gel electrophoresis

WP:

Whey proteins

References

  • Akhavan T., Luhovyy B.L., Brown P.H., Cho C.E. & Anderson G.H. 2010. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am. J. Clin. Nutr. 91(4): 966–975. DOI:10.3945/ajcn.2009.28406

    Article  PubMed  CAS  Google Scholar 

  • Akira S., Hira Akira S., Hirano T., Taga T. & Kishimoto T. 1990. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J. 4(11): 2860–2867. PMID: 2199284

    PubMed  CAS  Google Scholar 

  • Allain C.C., Poon L.S., Chan C.S., Richmond W. & Fu P.C. 1974. Enzymatic determination of total serum cholesterol. Clin. Chem. 20(4): 470–475.

    PubMed  CAS  Google Scholar 

  • Artym J. & Zimecki M. 2005. The role of lactoferrin in the proper development of newborns. Postepy Hig. Med. Dosw. 59: 421–432. PMID: 16106243

    Google Scholar 

  • Badr G., Alwasel S., Ebaid H., Mohany M. & Alhazza I. 2011a. Perinatal supplementation with thymoquinone improves diabetic complications and T cell immune responses in rat off-spring. Cell Immunol. 267(2): 133–140. PMID: 21295287

    Article  PubMed  CAS  Google Scholar 

  • Badr G., Bashandy S., Ebaid H., Mohany M. & Sayed D. 2011b. Vitamin C supplementation reconstitutes polyfunctional T cells in streptozotocin-induced diabetic rats. Eur. J. Nutr. DOI: 10.1007/s00394-011-0176-5

  • Ballard K.D., Bruno R.S., Seip R.L., Quann E.E., Volk B.M., Freidenreich D.J., Kawiecki D.M., Kupchak B.R., Chung M.Y., Kraemer W.J. & Volek J.S. 2009. Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial. Nut. J. 22: 8–34. DOI: 10.1186/1475-2891-8-34

    Google Scholar 

  • Belokrylov G.A., Popova O.Y.A., Molchanova I.V., Sorochinskaya E.I. & Anokhina V.V. 1992. Peptides and their constituent amino acids influence the immune response and phagocytosis in different ways. Int. J. Immunopharmacol. 14(7): 1285–1292. http://dx.doi.org/10.1016/0192-0561(92)90065-S

    Article  PubMed  CAS  Google Scholar 

  • Bounous G. 2000. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anti-Cancer Res. 20(6C): 4785–4792. PMID: 11205219

    CAS  Google Scholar 

  • Bounous G., Batist G. & Gold P. 1989. Immunoenhancing property of dietary whey protein in mice: role of glutathione. Clin. Invest. Med. 12(3): 154–161. PMID: 2743633

    PubMed  CAS  Google Scholar 

  • Bounous G. & Molson J.H. 2003. The Antioxidant system. Anticancer Res. 23(2B): 1411–1405. PMID: 12820403

    PubMed  CAS  Google Scholar 

  • Castro G.A., Carvalho J.E., Tinti S.V., Possenti A. & Sgarbieri V.C. 2010. Anti-ulcerogenic effect of a whey protein isolate and collagen hydrolysates against ethanol ulcerative lesions on oral administration to rats. J. Med. Food 13(1): 83–90. DOI:10.1089/jmf.2008.0277

    Article  PubMed  CAS  Google Scholar 

  • Chan P., Liu I.M., Tzeng T.F., Yang T.L. & Cheng J.T. 2007. Mechanism for blockade of angiotensin subtype 1 receptors to lower plasma glucose in streptozotocin-induced diabetic rats. Diabetes Obes. Metab. 9(1): 39–49. DOI: 10.1111/j.1463-1326.2005.00566.x

    Article  PubMed  CAS  Google Scholar 

  • Clark K.D., Lu Z. & Strand M.R. 2010. Regulation of melanization by glutathione in the moth Pseudoplusia includens. Insect Biochem. Molec. Biol. 40(6): 460–467. DOI:10.1016/j.ibmb.2010.04.005

    Article  CAS  Google Scholar 

  • David O.L. 1999. Breakthrough technology produces concentrated whey protein with bioactive immunoglobulins. Clin. Nutr. Insights 6(21): 1–4.

    Google Scholar 

  • Devaraj S. & Jialal I. 2000. Low-density lipoprotein postsecretory modification, monocyte function, and circulating adhesion molecules in type 2 diabetic patients with and without macrovascular complications: the effect of α-tocopherol supplementation. Circulation 102(2): 191–196. DOI:10.1161/01.CIR.102.2.191

    PubMed  CAS  Google Scholar 

  • Ebaid H., Hassnein K. & El-Feki M. 2005. The un-denatured whey protein enhanced wound healing in mice. J. Egypt. Germ. Soc Zool. 40: 2–27.

    Google Scholar 

  • Ebaid H., Salem A., Sayde A. & Metwalli A. 2011. Whey protein enhances normal inflammatory responses during cutaneous wound healing in diabetic rats. Lipids in Health Disease. 10(1): 235. DOI:10.1186/1476-511X-10-235

    Article  Google Scholar 

  • Elagamy E.I., Ruppanne R., Ismail A., Champagne C.P. & Assaf R. 1996. Purification and characterization of lactoferrin, lactoperoxidase, lysozyme and immunoglobulins from camel’s milk. Int. Dairy J. 6(2): 129–145. DOI: 10.1016/0958-6946(94)00055-7

    Article  CAS  Google Scholar 

  • Elagamy E.I., Nawar M.A., Shamsia S.H. & Awad S. 2008. The convenience of camel milk proteins for the nutrition of cow milk allergic children. J. Saudi Soc. Food Nutr. 3: 42–55.

    Google Scholar 

  • Farah Z. 1986. Effect of heat treatment on whey proteins of camel milk. Milchwissenschaft 41(12): 763–765.

    Google Scholar 

  • Gauthier S.F., Pouliot Y. & Saint-Sauveur D. 2006. Imunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 16(11): 1315–1323. DOI:10.1016/j.idairyj.2006.06.014

    Article  CAS  Google Scholar 

  • Grellnera W., Georgb T. & Wilskea J. 2000. Quantitative analysis of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Foren. Sci. Int. 113(1–3): 251–264. DOI: 10.1016/S0379-0738(00)00218-8

    Article  Google Scholar 

  • Han S.N., Leka L.S., Lichtenstein A.H., Ausman L.M. & Meydani S.N. 2003. Effect of a therapeutic lifestyle change diet on immune functions of moderately hypercholesterolemic humans. J. Lipid Res. 44(12): 2304–2310. DOI:10.1194/jlr.M300181-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H. 1993. Comparative studies on proteodermatan sulfate of bovine gastrointestinal tract. Tohoku J. Exp. Med. 171(3): 255–266. PMID: 8160181

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227(5259): 680–685. DOI: 10.1038/227680a0

    Article  CAS  Google Scholar 

  • Lands L.C., Grey V., Smountas A.A., Kramer V.G. & McKenna D. 1999. Lymphocyte glutathione levels in children with cystic fibrosis. Chest 116(1): 201–205. DOI:10.1378/chest.116.1.201

    Article  PubMed  CAS  Google Scholar 

  • Marchetti J. 1994. Metal complexes of bovine lactoferrin inhibit in Vitro replication of herpes simplex virus type 1 and 2. BioMetals 11(2): 89–94. DOI: 10.1023/A:1009217709851

    Article  Google Scholar 

  • Mattsby-Baltzer I., Roseanu A., Motas C., Elverfors J., Engberg I. & Hanson L.A. 1996. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr. Res. 40(2): 257–262. PMID:8827774

    Article  PubMed  CAS  Google Scholar 

  • Mercier A., Gauthier S.F. & Fliss I. 2004. Immunomodulating effects of whey proteins and their enzymatic digests. Int. Dairy J. 14(3): 175–183. DOI: http://dx.doi.org/10.1016/j.idairyj.2003.08.003

    Article  CAS  Google Scholar 

  • Middleton N., Jelen P. & Bell G. 2004. Whole blood and mononuclear cell glutathione response to dietary whey protein supplementation in sedentary and trained male human subjects. Int. J. Food Sci. Nut. 55(2): 131–141. DOI:10.1080/096374080410001666504

    Article  CAS  Google Scholar 

  • Nunes E.A., Bonatto S.J., de Oliveira H.H., Rivera N.L., Maiorka A., Krabbe E.L., Tanhoffer R.A., Fernandes L.C. 2008. The effect of dietary supplementation with 9-cis:12-trans and 10-trans:12-cis conjugated linoleic acid (CLA) for nine months on serum cholesterol, lymphocyte proliferation and polymorphonuclear cells function in Beagle dogs. Res. Vet. Sci. 84(1): 62–67. DOI: http://dx.doi.org/10.1016/j.rvsc.2007.03.010

    Article  PubMed  CAS  Google Scholar 

  • Plotnick G.D., Corretti M.C. & Vogel R.A. 1997. Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single highfat meal. JAMA 278(20): 1682–1686. PMID: 9388088

    Article  PubMed  CAS  Google Scholar 

  • Redwan E.R. & Tabll A. 2007. Camel lactoferrin markedly inhibits Hepatitis CVirus genotype 4 infection of human peripheral blood leukocytes. J. Immunoassay Immunochem. 28(3): 267–277. DOI:10.1080/15321810701454839

    Article  CAS  Google Scholar 

  • Rivat C., Rodrigues S., Bruyneel E., Piétu G., Robert A., Redeuilh G., Bracke M., Gespach C. & Attoub S. 2005. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3) — and vascular endothelial growth factor-mediated cellular invasion and tumor growth. Cancer Res. 65(1): 195–202. PMID: 15665295

    PubMed  Google Scholar 

  • Rusu D., Drouin R., Pouliot Y., Gauthier S. & Poubelle P.E. 2010. A bovine whey protein extract stimulates human neutrophils to generate bioactive IL−1Ra through a NF-kappaBand MAPK-dependent mechanism. J. Nutr. 140(2): 382–391. DOI: 10.3945/jn.109.109645

    Article  PubMed  CAS  Google Scholar 

  • Shargorodsky M., Debby O., Matas Z. & Zimlichman R. 2010. Effect of long-term treatment with antioxidants (vitamin C, vitamin E, coenzyme Q10 and selenium) on arterial compliance, humoral factors and inflammatory markers in patients with multiple cardiovascular risk factors. Nutr. Metab. 7: 55. DOI: 10.1186/1743-7075-7-55

    Article  Google Scholar 

  • Shen K., Lili J.Y.C., Qianming Y. & Zhengtao W. 2011. Influence of glutathione levels and activity of glutathione-related enzymes in the brains of tumor-bearing mice. BioSci Trends 5(1): 30–37. DOI:10.5582/bst.2011.v5.1.30

    Article  PubMed  CAS  Google Scholar 

  • Shimada K., Fujii T., Anai S., Fujimoto K. & Konishi N. 2011. ROS generation via NOX4 and its utility in the cytological diagnosis of urothelial carcinoma of the urinary bladder. BMC Urol. 11: 22. DOI: 10.1186/1471-2490-11-22

    Article  PubMed  CAS  Google Scholar 

  • Shinoda I., Takase M., Fukuwatari Y., Shimamura S., Köller M. & König W. 1996. Effects of lactoferrin and lactoferricin on the release of interleukin 8 from human polymorphonuclear leukocytes. Biosci. Biotechnol. Biochem. 60(3): 521–523. PMID:8901116

    Article  PubMed  CAS  Google Scholar 

  • Ustunol Z. & Wong C. 2010. Effect of nonfat dry milk and major whey components on interleukin-6 and interleukin-8 production in human intestinal epithelial-like Caco-2 cells. J. Dairy Sci. 93(6): 2311–2304. DOI:10.3168/jds.2009-2607

    Article  PubMed  CAS  Google Scholar 

  • Wolff H., Neubert U., Volkenandt M., Zöchling N., Schlüpen E.M., Bezold G. & Meurer M. 1994. Detection of Chlamydia trachomatis in semen by antibody-enzyme immunoassay compared with polymerase chain reaction, antigen-enzyme immunoassay, and urethral cell culture. Fertil. Steril. 62(2): 1250–1254. PMID: 7957993

    PubMed  CAS  Google Scholar 

  • Wong C.W. & Watson D.L. 1995. Immunomodulatory effects of dietary whey proteins in mice. J. Dairy Res. 62(2): 359–368. DOI:10.1017/S0022029900031058

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam Ebaid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebaid, H., Badr, G. & Metwalli, A. Immunoenhancing property of dietary un-denatured whey protein derived from three camel breeds in mice. Biologia 67, 425–433 (2012). https://doi.org/10.2478/s11756-012-0014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0014-0

Key words

Navigation