Skip to main content

Abstract

Whey protein is a mixture of proteins obtained from whey, the liquid milk component that separates during the production of cheese and other dairy products. While the major whey protein components include α-lactalbumin, β-lactoglobulin, BSA, and the fraction of proteose-peptone, the minor whey protein components include immunoglobulins, lactoferrins, ceruloplasmins, as well as certain enzymes such as lipase, xanthine oxidase, and lysozyme. Three types of whey proteins include whey protein isolate, whey protein concentrate, and whey protein hydrolysate, with various compositions. Whey protein has high protein efficiency ratio (PER), high biological value (BV), and contains sulfur-containing amino acids, including methionine and cysteine, that boost immune functions by intracellular conversion to glutathione. Whey proteins are suitable for nutraceuticals and functional food formulations due to their anticarcinogenic, anti-diabetic, antihypertensive, antioxidant, cardioprotective, hypotensive, immune improvement, and immunomodulatory properties, among others. However, more control studies are required to explore their applications for other targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiley AS (2014) Cultures of milk: the biology and meaning of dairy products in the United States and India. Harvard University Press, Cambridge, MA, p 11. isbn:978-0-674-72905-6

    Google Scholar 

  2. Karimi Alavijeh M, Meyer AS, Gras SL, Kentish SE (2020) Simulation and economic assessment of large-scale enzymatic N-acetyllactosamine manufacture. Biochem Eng J 154:107459. https://doi.org/10.1016/j.bej.2019.107459

    Article  CAS  Google Scholar 

  3. Ryan MP, Walsh G (2016) The biotechnological potential of whey. Rev Environ Sci Biotechnol 15(3):479–498. https://doi.org/10.1007/s11157-016-9402-1

    Article  CAS  Google Scholar 

  4. Awuchi CG, Twinomuhwezi H, Awuchi CG (2021) Hyphenated techniques. In: Egbuna C, Patrick-Iwuanyanwu K, Shah MA, Ifemeje JC, Rasul A (eds) Analytical techniques in biosciences: from basics to applications. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-12-822654-4.00015-4

    Chapter  Google Scholar 

  5. Awuchi CG, Twinomuhwezi H, Igwe VS, Sarvarian M, Amagwula IO (2021) Protein functions and structure prediction with I-TASSER, a novel technology. J Chem Biol Phys Sci 11(4):555–567. https://doi.org/10.24214/jcbps.B.11.4.55567

    Article  CAS  Google Scholar 

  6. Awuchi CG, Igwe VS, Amagwula IO, Echeta CK (2020) Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: a systematic review. Int J Food Sci 3(1):1–32

    Google Scholar 

  7. Chauhan B, Kumar G, Kalam N et al (2013) Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res 4(1):4–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. EFSA Panel on Dietetic Products, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to whey protein. EFSA J 8(10):1818. https://doi.org/10.2903/j.efsa.2010.1818

    Article  CAS  Google Scholar 

  9. Willis B, Lopez G, Patel K, Frank K (2018) Whey protein. Examine.com

  10. Melnik BC (2012) Excessive leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity. J Obes 2012:14. https://doi.org/10.1155/2012/354721

    Article  Google Scholar 

  11. Melnik BC, John SM, Schmitz G (2015) Milk consumption during pregnancy increases birth weight, a risk factor for the development of diseases of civilization. J Transl Med 13:13. https://doi.org/10.1186/s12967-015-0541-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gunnars, K (2018) Whey protein 101: the ultimate beginner’s guide. Retrieved from https://www.healthline.com/nutrition/whey-protein-101#muscle-mass-and-strength. Accessed 1 Sept 2021

  13. Awuchi CG, Igwe VS, Amagwula IO (2020) Nutritional diseases and nutrient toxicities: a systematic review of the diets and nutrition for prevention and treatment. Int J Adv Acad Res 6(1):1–46

    Article  Google Scholar 

  14. Awuchi CG, Igwe VS, Amagwula IO (2020) Ready-to-use therapeutic foods (RUTFs) for remedying malnutrition and preventable nutritional diseases. Int J Adv Acad Res 6(1):47–81

    Google Scholar 

  15. Awuchi CG, Igwe VS, Echeta CK (2019) The functional properties of foods and flours. Int J Adv Acad Res 5(11):139–160

    Google Scholar 

  16. Awuchi CG (2019) Proximate composition and functional properties of different grain flour composites for industrial applications. Int J Adv Acad Res 2(1):43–64

    Google Scholar 

  17. Patel S (2015) Emerging trends in nutraceutical applications of whey protein and its derivatives. J Food Sci Technol 52(11):6847–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muza SF, Peres AP, Degáspari CH (2014) Desenvolvimento de iogurte enriquecido com proteína do soro do leite. Cadernos da Escola de Saúde 1:79–89. ISSN 1984-7041

    Google Scholar 

  19. Alves MP, Moreira RO, Júnior PHR, Martins MCF, Perrone IT, Carvalho AF (2014) Soro de leite: Tecnologias Para o processamento de coprodutos. Revista do Instituto de Laticínios Cândido Tostes 69:212–226. https://doi.org/10.14295/2238-6416.v69i3.341

    Article  Google Scholar 

  20. Batista MA, Natália CAC, Marialice PCS (2018) Whey and protein derivatives: applications in food products development, technological properties and functional effects on child health. Cogent Food Agriculture 4(1):1509687. https://doi.org/10.1080/23311932.2018.1509687

    Article  Google Scholar 

  21. Arora S, Singh TP, Rekha RS (2019) Whey proteins—a potential nutraceutical. Res Rev J Dairy Sci Technol 8(2):1–5

    CAS  Google Scholar 

  22. Minj S, Anand S (2020) Whey proteins and its derivatives: bioactivity, functionality, and current applications. Dairy 1:233–258. https://doi.org/10.3390/dairy1030016

    Article  Google Scholar 

  23. Awuchi CG, Nwankwere ET (2018) Residual calcium content of sweet potato slices after osmotic pre-treatment with salt (NaCl) solution. Am J Food Nutr Health 3(1):8–15

    Google Scholar 

  24. Chung CS, Yamini S, Trumbom PR (2012) FDA’s health claim review: whey-protein partially hydrolyzed infant formula and atopic dermatitis. Pediatrics 130:e408–e414. https://doi.org/10.1542/peds.2012-0333

    Article  PubMed  Google Scholar 

  25. Mezzomo TR, Nadal J (2014) A segurança alimentar e nutricional do público infanto-juvenil: O leite como componente. Demetra 9:503–513. https://doi.org/10.12957/demetra.2014.9485

    Article  Google Scholar 

  26. Raikos V, Dassios T (2014) Health-promoting properties of bioactive peptides derived from milk proteins in infant food: a review. Dairy Sci Technol 94:91–101. https://doi.org/10.1007/s13594-013-0152-3

  27. Attaallah W, Yilmaz AM, Erdoğan N et al (2012) Whey protein versus whey protein hydrolyzate for the protection of azoxymethane and dextran sodium sulfate induced colonic tumors in rats. Pathol Oncol Res 18:817–822. https://doi.org/10.1007/s12253-012-9509-9

    Article  CAS  PubMed  Google Scholar 

  28. Sousa GTD, Lira FS, Rosa JC, Oliveira EP, Oyama LM, Santos RV, Pimentel GD (2012) Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids Health Dis 11:1–9. https://doi.org/10.1186/1476-511X-11-1

    Article  CAS  Google Scholar 

  29. Jain SK (2012) L-cysteine supplementation as an adjuvant therapy for type-2 diabetes. Can J Physiol Pharmacol 90:1061–1064. https://doi.org/10.1139/y2012-087

    Article  CAS  PubMed  Google Scholar 

  30. Ballard KD, Kupchak BR, Volk BM et al (2013) Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women. Br J Nutr 109:882–893. https://doi.org/10.1017/S0007114512002061

    Article  CAS  PubMed  Google Scholar 

  31. Sattler FR, Natasa R, Mulligan K, Kevin EY, Susan LK, Andrew Z, Beverly AS, Robert Z, Bruce B (2008) Evaluation of high-protein supplementation in weight-stable HIV-positive subjects with a history of weight loss: a randomized, double-blind, multicenter trial. Am J Clin Nutr 88(5):1313–1321

    CAS  PubMed  Google Scholar 

  32. Pérez-Cano FJ, Marín-Gallén S, Castell M et al (2007) Bovine whey protein concentrate supplementation modulates maturation of immune system in suckling rats. Br J Nutr 98(Suppl. 1):S80–S84. https://doi.org/10.1017/S0007114507838074

    Article  CAS  PubMed  Google Scholar 

  33. Morato PN, Lollo PC, Moura CS, Batista TM, Carneiro EM, Amaya- Farfan J (2013) A dipeptide and an amino acid; present in whey protein hydrolysate increase translocation of GLUT-4 to the plasma membrane in Wistar rats. Food Chem 139:853–859. https://doi.org/10.1016/j.foodchem.2012.12.062

    Article  CAS  PubMed  Google Scholar 

  34. Van Calcar SC, Ney DM (2012) Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino acid-based medical foods for nutrition management of phenylketonuria. J Acad Nutr Diet 112:1201–1210. https://doi.org/10.1016/j.jand.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abrahão V (2012) Nourishing the dysfunctional gut and whey protein. Curr Opin Clin Nutr Metab Care 15:480–484. https://doi.org/10.1097/MCO.0b013e328356b71e

    Article  CAS  PubMed  Google Scholar 

  36. Kimura Y, Sumiyoshi M, Kobayashi T (2014) Whey peptides prevent chronic ultraviolet B radiation-induced skin aging in melanin-possessing male hairless mice. J Nutr 144:27–32. https://doi.org/10.3945/jn.113.180406

    Article  CAS  PubMed  Google Scholar 

  37. Tahavorgar A, Vafa M, Shidfar F et al (2014) Whey protein preloads are more beneficial than soy protein preloads in regulating appetite, calorie intake, anthropometry, and body composition of overweight and obese men. Nutr Res. https://doi.org/10.1016/j.nutres.2014.08.015

  38. Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39:643–662. https://doi.org/10.2165/00007256-200939080-00003

    Article  PubMed  Google Scholar 

  39. Freidenreich DJ, Volek JS (2012) Immune responses to resistance exercise. Exerc Immunol Rev 18:8–41

    PubMed  Google Scholar 

  40. Gülseren I, Fang Y, Corredig M (2012) Complexation of high methoxyl pectin with ethanol desolvated whey protein nanoparticles: physico-chemical properties and encapsulation behaviour. Food Funct 3:859–866. https://doi.org/10.1039/c2fo10235h

    Article  CAS  PubMed  Google Scholar 

  41. Martin V, Ratel S, Siracusa J et al (2013) Whey proteins are more efficient than casein in the recovery of muscle functional properties following a casting induced muscle atrophy. PLoS One 8:e75408. https://doi.org/10.1371/journal.pone.0075408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Churchward-Venne TA, Breen L, Di Donato DM et al (2014) Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr 99:276–286. https://doi.org/10.3945/ajcn.113.068775

    Article  CAS  PubMed  Google Scholar 

  43. Lollo PCB, Amaya-Farfan J, Faria IC et al (2014) Hydrolysed whey protein reduces muscle damage markers in Brazilian elite soccer players compared with whey protein and maltodextrin. A twelve-week in-championship intervention. Int Dairy J 34:19–24. https://doi.org/10.1016/j.idairyj.2013.07.001

    Article  CAS  Google Scholar 

  44. Volek JS, Volk BM, Gómez AL et al (2013) Whey protein supplementation during resistance training augments lean body mass. J Am Coll Nutr 32:122–135. https://doi.org/10.1080/07315724.2013.793580

    Article  CAS  PubMed  Google Scholar 

  45. Williams RA, Mamotte CDS, Burnett JR (2008) Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev 29:31–41

    PubMed  PubMed Central  Google Scholar 

  46. Solverson P, Murali SG, Brinkman AS et al (2012) Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria. Am J Physiol Endocrinol Metab 302:E885–E895. https://doi.org/10.1152/ajpendo.00647.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Demirdas S, Coakley KE, Bisschop PH et al (2015) Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis 10:17. https://doi.org/10.1186/s13023-015-0232-y

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ney DM, Blank RD, Hansen KE (2014) Advances in the nutritional and pharmacological management of phenylketonuria. Curr Opin Clin Nutr Metab Care 17:61–68. https://doi.org/10.1097/MCO.0000000000000002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strisciuglio P, Concolino D (2014) New strategies for the treatment of phenylketonuria (PKU). Meta 4:1007–1017. https://doi.org/10.3390/metabo4041007

    Article  CAS  Google Scholar 

  50. Castro GA, Maria DA, Bouhallab S, Sgarbieri VC (2009) In vitro impact of a whey protein isolate (WPI) and collagen hydrolysates (CHs) on B16F10 melanoma cells proliferation. J Dermatol Sci 56:51–57. https://doi.org/10.1016/j.jdermsci.2009.06.016

    Article  CAS  PubMed  Google Scholar 

  51. Takata T, Tanaka F, Yamada T et al (2001) Clinical significance of caspase-3 expression in pathologic-stage I, nonsmall-cell lung cancer. Int J Cancer 96(Suppl):54–60. https://doi.org/10.1002/ijc.10347

    Article  CAS  PubMed  Google Scholar 

  52. Dillon EL, Basra G, Horstman AM et al (2012) Cancer cachexia and anabolic interventions: a case report. J Cachex Sarcopenia Muscle 3:253–263. https://doi.org/10.1007/s13539-012-0066-6

    Article  Google Scholar 

  53. Zhang Q-X, Ling Y-F, Sun Z et al (2012) Protective effect of whey protein hydrolysates against hydrogen peroxide-induced oxidative stress on PC12 cells. Biotechnol Lett 34:2001–2006. https://doi.org/10.1007/s10529-012-1017-1

    Article  CAS  PubMed  Google Scholar 

  54. Awuchi CG, Amagwula IO (2021) Biochemistry and nutrition of carbohydrates. Global J Res Agric Life Sci 1(1):4–12

    Google Scholar 

  55. Awuchi CG, Twinomuhwezi H, Awuchi CG, Amagwula IO (2022) Immune foods for fighting coronavirus disease 2019. In: Rudrapal M, Egbuna C (eds) Medicinal plants, phytomedicine and traditional herbal remedies for drug discovery and development against COVID-19. Bentham Books, Sharjah. In Press

    Google Scholar 

  56. Gerez CL, Font de Valdez G, Gigante ML, Grosso CRF (2012) Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett Appl Microbiol 54:552–556. https://doi.org/10.1111/j.1472-765X.2012.03247.x

    Article  CAS  PubMed  Google Scholar 

  57. Zhao L, Huang Q, Huang S et al (2014) Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode. J Agric Food Chem. https://doi.org/10.1021/jf502412f

  58. Walsh H, Cheng J, Guo M (2014) Effects of carbonation on probiotic survivability, physicochemical, and sensory properties of milk-based symbiotic beverages. J Food Sci 79:M604–M613. https://doi.org/10.1111/1750-3841.12381

    Article  CAS  PubMed  Google Scholar 

  59. Hébrard G, Hoffart V, Beyssac E et al (2010) Coated whey protein/alginate microparticles as oral controlled delivery systems for pro-biotic yeast. J Microencapsul 27:292–302. https://doi.org/10.3109/02652040903134529

    Article  CAS  PubMed  Google Scholar 

  60. Freudenberg A, Petzke KJ, Klaus S (2013) Dietary L-leucine and L-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity. Amino Acids 44:519–528. https://doi.org/10.1007/s00726-012-1363-2

    Article  CAS  PubMed  Google Scholar 

  61. Tufail T, Ijaz A, Noreen S, Arshad MU, Gilani SA, Bashir S, Din A, Shahid MZ, Khan AA, Khalil AA, Awuchi CG (2021) Pathophysiology of obesity and diabetes. In: Egbuna C, Hassan S (eds) Dietary phytochemicals. Springer, Cham, pp 29–42. https://doi.org/10.1007/978-3-030-72999-8_2

    Chapter  Google Scholar 

  62. Egbuna C, Awuchi CG, Kushwaha G, Rudrapal M, Patrick-Iwuanyanwu KC, Singh O, Odoh UE, Khan J, Jeevanandam J, Kumarasamy S, Narayanan M, Chukwube VO, Palai S, Găman M-A, Uche CZ, Ogaji DS, Ezeofor NJ, Mtewa AG, Patrick-Iwuanyanwu CC, Kesh SS, Shivamallu C, Saravanan K, Tijjani H, Akram M, Ifemeje JC, Olisah MC, Chikwendu CJ (2021) Bioactive compounds effective against type 2 diabetes mellitus: a systematic review. Curr Topics Med Chem 21:1. https://doi.org/10.2174/1568026621666210509161059

    Article  CAS  Google Scholar 

  63. Yasmin I, Khan WA, Naz S, Iqbal MW, Awuchi CG, Egbuna C, Hassan S, Patrick-Iwuanyanwu KC, Uche CZ (2021) Etiology of obesity, cancer, and diabetes. In: Egbuna C, Hassan S (eds) Dietary phytochemicals. Springer, Cham, pp 1–27. https://doi.org/10.1007/978-3-030-72999-8_1

    Chapter  Google Scholar 

  64. Awuchi CG (2021) Medicinal plants, bioactive compounds, and dietary therapies for treating type 1 and type 2 diabetes mellitus [online first]. IntechOpen. https://doi.org/10.5772/intechopen.96470. Available from: https://www.intechopen.com/online-first/medicinal-plants-bioactive-compounds-and-dietary-therapies-for-treating-type-1-and-type-2-diabetes-m

  65. Casqueiro J, Casqueiro J, Alves C (2012) Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J Endocrinol Metab 16(Suppl. 1):S27–S36. https://doi.org/10.4103/2230-8210.94253

    Article  PubMed  PubMed Central  Google Scholar 

  66. Awuchi CG, Echeta CK, Igwe VS (2020) Diabetes and the nutrition and diets for its prevention and treatment: a systematic review and dietetic perspective. Health Sci Res 6(1):5–19

    Google Scholar 

  67. Badr G, Badr BM, Mahmoud MH et al (2012) Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue. BMC Immunol 13:32. https://doi.org/10.1186/1471-2172-13-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salehi A, Gunnerud U, Muhammed SJ et al (2012) The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr Metab (Lond) 9:48. https://doi.org/10.1186/1743-7075-9-48

    Article  CAS  PubMed  Google Scholar 

  69. Mortensen LS, Holmer-Jensen J, Hartvigsen ML et al (2012) Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes. Eur J Clin Nutr 66:799–805. https://doi.org/10.1038/ejcn.2012.48

    Article  CAS  PubMed  Google Scholar 

  70. Toedebusch RG, Childs TE, Hamilton SR et al (2012) Postprandial leucine and insulin responses and toxicological effects of a novel whey protein hydrolysate-based supplement in rats. J Int Soc Sports Nutr 9:24. https://doi.org/10.1186/1550-2783-9-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jakubowicz D, Froy O (2013) Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and type 2 diabetes. J Nutr Biochem 24:1–5. https://doi.org/10.1016/j.jnutbio.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  72. Akhavan T, Luhovyy BL, Panahi S et al (2014) Mechanism of action of pre-meal consumption of whey protein on glycemic control in young adults. J Nutr Biochem 25:36–43. https://doi.org/10.1016/j.jnutbio.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  73. Tong X, Li W, Xu J-Y et al (2014) Effects of whey protein and leucine supplementation on insulin resistance in non-obese insulin-resistant model rats. Nutrition 30:1076–1080. https://doi.org/10.1016/j.nut.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  74. Alexander DD, Schmitt DF, Tran NL et al (2010) Partially hydrolyzed 100% whey protein infant formula and atopic dermatitis risk reduction: a systematic review of the literature. Nutr Rev 68:232–245. https://doi.org/10.1111/j.1753-4887.2010.00281.x

    Article  PubMed  Google Scholar 

  75. Badr G, Ebaid H, Mohany M, Abuelsaad AS (2012) Modulation of immune cell proliferation and chemotaxis towards CC chemokine ligand (CCL)-21 and CXC chemokine ligand (CXCL)-12 in undenatured whey protein-treated mice. J Nutr Biochem 23:1640–1646. https://doi.org/10.1016/j.jnutbio.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  76. Prussick R, Prussick L, Gutman J (2013) Psoriasis improvement in patients using glutathione-enhancing, nondenatured whey protein isolate: a pilot study. J Clin Aesthet Dermatol 6:23–26

    PubMed  PubMed Central  Google Scholar 

  77. Sheikholeslami VD, Ahmadi KGF (2012) Changes in antioxidant status and cardiovascular risk factors of overweight young men after six weeks supplementation of whey protein isolate and resistance training. Appetite 59:673–678. https://doi.org/10.1016/j.appet.2012.08.005

    Article  CAS  Google Scholar 

  78. Krzeminski A, Prell KA, Busch-Stockfisch M et al (2014) Whey protein–pectin complexes as new texturising elements in fat-reduced yoghurt systems. Int Dairy J 36:118–127. https://doi.org/10.1016/j.idairyj.2014.01.018

    Article  CAS  Google Scholar 

  79. Godswill AC, Twinomuhwezi H, Igwe VS, Amagwula IO (2020) Food additives and food preservatives for domestic and industrial food applications. J Anim Health 2(1):1–16

    Google Scholar 

  80. Kuhn KR, Cunha RL (2012) Flaxseed oil – whey protein isolate emulsions: effect of high pressure homogenization. J Food Eng 111:449–457. https://doi.org/10.1016/j.jfoodeng.2012.01.016

    Article  CAS  Google Scholar 

  81. Akalın AS, Unal G, Dinkci N, Hayaloglu AA (2012) Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. J Dairy Sci 95:3617–3628. https://doi.org/10.3168/jds.2011-5297

    Article  CAS  PubMed  Google Scholar 

  82. Nadeem M, Salim-ur-Rehman MA et al (2012) Development, characterization, and optimization of protein level in date bars using response surface methodology. Sci World J 2012:518702. https://doi.org/10.1100/2012/518702

    Article  CAS  Google Scholar 

  83. Yadav DN, Balasubramanian S, Kaur J et al (2014) Non-wheat pasta based on pearl millet flour containing barley and whey protein concentrate. J Food Sci Technol 51:2592–2599. https://doi.org/10.1007/s13197-012-0772-2

    Article  CAS  PubMed  Google Scholar 

  84. Martin AH, de Jong GAH (2012) Enhancing the in vitro Fe(2+) bio-accessibility using ascorbate and cold-set whey protein gel particles. Dairy Sci Technol 92:133–149. https://doi.org/10.1007/s13594-011-0055-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mehyar GF, Al-Isamil KM, Al-Ghizzawi HM, Holley RA (2014) Stability of cardamom (Elettaria cardamomum) essential oil in microcapsules made of whey protein isolate, guar gum, and carrageenan. J Food Sci. https://doi.org/10.1111/1750-3841.12652

  86. Pérez-Masiá R, López-Nicolás R, Periago MJ et al (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133. https://doi.org/10.1016/j.foodchem.2014.07.051

    Article  CAS  PubMed  Google Scholar 

  87. Janjarasskul T, Tananuwong K, Krochta JM (2011) Whey protein film with oxygen scavenging function by incorporation of ascorbic acid. J Food Sci 76:E561–E568. https://doi.org/10.1111/j.1750-3841.2011.02409.x

    Article  CAS  PubMed  Google Scholar 

  88. Shah NH (2014) Effect of health on nutrition/dairy foods and human nutrition. Int J Indian Psychol 2:60–64. ISSN 2348-5396

    Google Scholar 

  89. Walczyk T, Muthayya S, Wegmüller R, Thankachan P, Sierksma A, Frenken LGJ, Hurrell RF (2014) Inhibition of iron absorption by calcium is modest in an iron-fortified, casein- and whey-based drink in Indian children and is easily compensated for by addition of ascorbic acid. J Nutr 144:1703–1709. https://doi.org/10.3945/jn.114.193417

    Article  CAS  PubMed  Google Scholar 

  90. Filla JM, Stadler M, Heck A, Hinrichs J (2021) Assessing whey protein sources. Dispersion preparation method and enrichment of thermomechanically stabilized whey protein pectin complexes for technical scale production. Foods 2021(10):715. https://doi.org/10.3390/foods10040715

    Article  CAS  Google Scholar 

  91. Ferraris Q, Qian MC (2021) Direct ethanolic extraction of polar lipids and fractional crystallization from whey protein phospholipid concentrate. JDS Commun 2:177–181. https://doi.org/10.3168/jdsc.2021-0076

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chalermthai B, Wui YC, Juan-Rodrigo BO, Hanifa T, Bradley DO, Jens ES (2019) Preparation and characterization of whey protein-based polymers produced from residual dairy streams. Polymers 11:722. https://doi.org/10.3390/polym11040722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Prodan D, Miuța F, Mihaela V, Marioara M, Rahela C, Viorica T, Andreea SP (2020) Whey proteins characterization, free amino acids profile and antimicrobial study of some dairy drinks based on milk serum. Preprint 12. https://doi.org/10.20944/preprints202009.0607.v1

  94. Morais HA, Silvestre MPC, Amorin LL, Silva VDM, Silva MR, Silva ACS, Silveira JN (2014) Use of different proteases to obtain whey protein concentrate hydrolysates with inhibitory activity toward angiotensin-converting enzyme. J Food Biochem 38:102–109. https://doi.org/10.1111/jfbc.12032

    Article  CAS  Google Scholar 

  95. Silva MR, Silvestre MPC, Silva VDM, Souza MWS, Junior COL, Afonso WO, Rodrigues DF (2014) Production of ACE-inhibitory whey protein concentrate hydrolysates: use of pancreatin and papain. Int J Food Prop 17:1002–1012. https://doi.org/10.1080/10942912.2012.685821

    Article  CAS  Google Scholar 

  96. Silvestre MPC, Morais HA, Silva VDM, Silva MR (2013) Whey as source of peptides with high anti-oxidant activity: use of a pancreatin and an Aspergillussojae protease. Publicatio UEPG Ciências Biológicas e da Saúde 19:143–147. https://doi.org/10.5212/Publ.Biologicas.v.19i2.0007

    Article  Google Scholar 

  97. Ahaotu NN, Bede NE, Umejesi TJ, Echeta CK, Awuchi CG (2020) Studies on the functional properties of malted soy-garri as affected by moisture variation during storage. Eur Acad Res 8(8):4616–4625

    Google Scholar 

  98. Awuchi CG, Owuamanam IC, Ogueke CC, Hannington T (2020) The assessment of the physical and pasting properties of grains. Eur Acad Res 8(2):1072–1080

    Google Scholar 

  99. Ahaotu NN, Echeta CK, Bede NE, Awuchi CG, Anosike CL, Ibeabuchi CJ, Ojukwu M (2020) Study on the nutritional and chemical composition of “Ogiri” condiment made from sandbox seed (Hura crepitans) as affected by fermentation time. GSC Biol Pharm Sci 11(2):105–113. https://doi.org/10.30574/gscbps.2020.11.2.0115

    Article  CAS  Google Scholar 

  100. Twinomuhwezi H, Awuchi CG, Kahunde D (2020) Extraction and characterization of pectin from orange (Citrus sinensis), Lemon (Citrus limon) and tangerine (Citrus tangerina). Am J Phys Sci 1(1):17–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinaza Godswill Awuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awuchi, C.G. (2022). Whey Protein from Milk as a Source of Nutraceuticals. In: Egbuna, C., Sawicka, B., Khan, J. (eds) Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-98760-2_12

Download citation

Publish with us

Policies and ethics