Skip to main content
Log in

Expression of larval jelly antimicrobial peptide defensin1 in Apis mellifera colonies

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Honeybee brood food, larval jelly (LJ) contains antimicrobial peptide defensin1 that is able to inhibit in vitro growth of the pathogen causing American foulbrood (AFB). This fact suggests that LJ defensin1 could participate in defense of colonies against AFB. We assume that the potential defense function of defensin1 in vivo might depend on its amount in LJs. Therefore, we investigated the expression of defensin1 in colonies. The expression was examined on protein and mRNA levels in colonies of several Apis mellifera carnica lines collected in 3 apiaries (1 infected with AFB) with the aim to identify factors influencing the expression. Levels of defensin1 were determined in royal and worker jellies by a developed immunoblot procedure employing antibodies generated against the recombinant peptide. Defensin1 mRNA levels in nurse heads were explored by dot blot hybridization using transcript of two MRJP genes for normalization. Analyzed LJs contained various amounts of defensin1 (0.159–0.524 μg/mg jelly). Higher variations in defensin1 levels were observed among LJ samples collected from different colonies than among those collected within single colony. Colonies producing LJs with elevated defensin1 levels occurred among various honeybee lines. Levels of defensin1 mRNA varied in heads of nurses and the variations correlated with defensin1 peptide levels in LJs only in some colonies. Obtained data demonstrate that defensin1 is constitutively expressed into LJs in colonies and indicate that its levels in jellies are determined by genetic factors regulating transcription and/or translation/posttranslation processes in nurses. AFB infection, larval age and type of LJ do not seem to affect the levels of the peptide in LJs. Findings made in this work suggest that it should be possible to breed novel honeybee lines expressing higher amounts of defensin1 into LJs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert Š., Klaudiny J. & Šimúth J. 1999. Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly. Insect Biochem. Mol. Biol. 29(5): 427–434. PMID: 10380654

    Article  PubMed  CAS  Google Scholar 

  • Asencot M. & Lensky Y. 1988. The effect of soluble sugars in stored royal jelly on the differentiation of female honey bee (Apis mellifera L.) larvae to queens. Insect Biochem. 18(2): 127–133.

    Article  CAS  Google Scholar 

  • Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. & Struhl K. 2000. Current Protocols in Molecular Biology. Massachusetts General Hospital, Harvard Medical School, John Wiley & Sons, Inc. ISBN/ISSN: 978-0-471-50338-5

  • Bachanová K., Klaudiny J., Kopernický J. & Šimúth J. 2002. Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 33(2): 259–269. DOI: 10.1051/apido:2002015

    Article  Google Scholar 

  • Bailey L. & Ball B.V. 1991. Honey Bee Pathology. Academic Press, London, 193 pp. ISBN: 0120734818, 9780120734818

    Google Scholar 

  • Bamrick J.F. 1964. Resistance to American foulbrood in honey bees. V. Comparative pathogenesis in resistant and susceptible larvae. J. Insect Pathol. 6: 284–304.

    Google Scholar 

  • Bíliková K., Gusui W. & Šimúth J. 2001. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 32(3): 275–283. DOI: 10.1051/apido:2001129

    Article  Google Scholar 

  • Bíliková K., Mirgorodskaya E., Bukovská G., Gobom J., Lehrach H. & Šimúth J. 2009. Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2. Proteomics 9: 2131–2138. DOI: 10.1002/pmic.200800705

    Article  PubMed  Google Scholar 

  • Blum M. S., Novak A. F. & Taber S. 1959. 10-hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly. Science 130(3373): 452–453. DOI: 10.1126/science.130.3373.452

    Article  PubMed  CAS  Google Scholar 

  • Brouwers E.V.M., Ebert R. & Beetsma J. 1987. Behavioural and physiological aspects of nurse bees in relation to the composition of larval food during caste differentiation in the honeybee. J. Apic. Res. 26(1): 11–23.

    Google Scholar 

  • Bulet P., Hetru C., Dimarcq J.L. & Hoffmann D. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23(4–5): 329–344. PMID: 10426426

    Article  PubMed  CAS  Google Scholar 

  • Bulet P. & Stöcklin R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Prot. Pept. Lett. 12(1): 3–11. DOI: http://dx.doi.org/10.2174/0929866053406011

    Article  CAS  Google Scholar 

  • Casteels-Josson K., Zhang W., Capaci T., Casteels P. & Tempst P. 1994. Acute transcriptional response of the honeybee peptide-antibiotics gene repertoire and required posttranslational conversion of the precursor structures. J. Biol. Chem. 269(46): 28569–28575. PMID: 7961803

    PubMed  CAS  Google Scholar 

  • Casteels P. 1998. Immune response in Hymenoptera, pp. 92–110. In: Brey P.T. & Hultmark D. (eds), Molecular Mechanisms of Immune Responses in Insect, Chapman & Hall, London. 340 pp. ISBN-10: 0412712806

    Google Scholar 

  • Chomczynsky P. & Sacchi N. 1987. Single-step RNA isolation from cultured cells or tissues. Anal. Biochem. 162(1): 156–159. DOI: 10.1016/0003-2697(87)90021-2

    Google Scholar 

  • Cociancich S., Ghazi A., Hetru C. & Hoffmann J.A. & Letellier L. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268(26): 19239–19245. PMID: 7690029

    PubMed  CAS  Google Scholar 

  • Cremer S., Armitage S. & Schmid-Hempel P. 2007. Social immunity. Curr. Biol. 17(16): R693–R702. DOI: 10.1016/j.cub. 2007.06.008

    Article  PubMed  CAS  Google Scholar 

  • Evans J.D. 2003. Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J. Invertebr. Pathol. 83(1): 46–50. DOI: 10.1016/S0022-2011(03)00039-9

    Article  PubMed  CAS  Google Scholar 

  • Evans J.D. 2004. Transcriptional immune responses by honey bee larvae during invasion by the bacterial pathogen, Paenibacillus larvae. J. Invertebr. Pathol. 85(2): 105–111. DOI: 10.1016/j.jip.2004.02.004

    Article  PubMed  CAS  Google Scholar 

  • Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.L. Jiang H., Kanost M., Thompson G.J., Zou Z. & Hultmark, D. 2006. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15(5): 645–656. DOI: 10.1111/j.1365-2583.2006.00682.x

    Article  PubMed  CAS  Google Scholar 

  • Evans J.D. & Pettis J.S. 2005. Colony-level impacts of immune responsiveness in honeybees Apis mellifera. Evolution 59(10): 2270–2274. DOI: 10.1554/05-060.1

    PubMed  CAS  Google Scholar 

  • Evans J.D. & Spivak M. 2010. Socialized Medicine: Individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 103(Suppl.): S62–S72. DOI: 10.1016/j.jip.2009.06.019

    Article  PubMed  Google Scholar 

  • Feng M., Fang Y. & Li J. 2009. Proteomic analysis of honeybee worker (Apis mellifera) hypopharyngeal gland development. BMC Genomics 10(1): 645. DOI: 10.1186/1471-2164-10-645

    Article  PubMed  Google Scholar 

  • Fontana R., Mendes M.A., de Souza B.M., Konno K., César L.M.M., Malaspina O. & Palma M.S. 2004. Jelleines: a family of antibacterial peptides from the royal jelly of honeybees (Apis mellifera). Peptides 25(6): 919–928. DOI: 10.1016/j.peptides.2004.03.016

    Article  PubMed  CAS  Google Scholar 

  • Forsgren E., Olofsson T.C., Vásquez A. & Fries I. 2010. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41(1): 99–108. DOI: 10.1051/apido/2009065

    Article  Google Scholar 

  • Fries I. & Camazine S. 2001. Implication of horizontal and vertical pathogen transmission for honeybee epidemiology. Apidologie 32(3): 199–214. DOI: 10.1051/apido:2001122

    Article  Google Scholar 

  • Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T. & Kobayashi K. 1990. A potent antibacterial protein in royal jelly. J. Biol. Chem. 265(19): 11333–11337. PMID: 2358464

    PubMed  CAS  Google Scholar 

  • Gao B. & Zhu S. 2010. Identification and characterization of the parasitic wasp Nasonia defensins: Positive selection targeting the functional region? Dev. Comp. Immunol. 34(6): 659–668. DOI: 10.1016/j.dci.2010.01.012

    Article  PubMed  CAS  Google Scholar 

  • Genersch E., Ashiralieva A. & Fries I. 2005. Strain- and genotypespecific differences in virulence of Paenibacillus larvae subsp. larvae, the causative agent American foulbrood disease in honey bees. Appl. Environ. Microbiol. 71(11): 7551–7555. DOI: 10.1128/AEM.71.11.7551-7555.2005

    CAS  Google Scholar 

  • Genersch E., Forsgren E., Pentikäinen J., Ashiralieva A., Rauch S., Kilwinski J. & Fries I. 2006. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 56(3): 501–511. DOI: 10.1099/ijs.0.63928-0

    Article  PubMed  CAS  Google Scholar 

  • Genersch E. 2010. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103(Suppl.): S10–S19. DOI: 10.1016/j.jip.2009.06.015

    Article  PubMed  Google Scholar 

  • Hansen H. & Brødsgaard C. J. 1999. American foulbrood: a review of its biology, diagnosis and control. Bee World 80(1): 5–23.

    Google Scholar 

  • Hornitzky M.A.Z. 1998. The pathogenicity of Paenibacillus larvae subsp. larvae spores and vegetative cells to honey bee (Apis mellifera) colonies and their susceptibility to royal jelly. J. Apic. Res. 37(4): 267–271.

    Google Scholar 

  • Jung-Hoffmann I. 1966. Die Determination von Königin und Arbeiterin der Honigbiene. Z. Bienenforsch. 8: 296–322.

    Google Scholar 

  • Klaudiny J., Albert Š., Bachanová K., Kopernicky J. & Šimúth J. 2005. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem. Mol. Biol. 35(1): 11–22. DOI: 10.1016/j.ibmb.2004.09.007

    Article  PubMed  CAS  Google Scholar 

  • Klaudiny J., Hanes J., Kulifajová J., Albert Š. & Šimúth J. 1994a. Molecular cloning of two cDNAs from the head of the nurse honey bee (Apis mellifera L.) coding for related proteins of royal jelly. J. Apic. Res. 33(2): 105–111.

    CAS  Google Scholar 

  • Klaudiny J., Kulifajová J., Crailsheim K. & Šimúth J. 1994b. New approach to the studying of labor division in honey bee colony. Apidologie 25(6): 596–600. DOI: 10.1051/apido:19940610

    Article  Google Scholar 

  • Knecht H. & H., Kaatz D. 1990. Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie 21(5): 457–468. DOI: 10.1051/apido:19900507

    Article  Google Scholar 

  • Kubo T., Sasaki M., Nakamura J., Sasagawa H., Ohashi K., Takeuchi H. & Natori S. 1996. Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L.) with the age and /or role. J. Biochem. 119(2): 291–295. PMID: 8882720

    PubMed  CAS  Google Scholar 

  • Lee K.H., Hong S.Y., Oh J.E., Kwon M., Yoon J.H., Lee J. Lee B.L. & Moon H.M. 1998. Identification and characterization of the antimicrobial peptide corresponding to C-terminal beta-sheet domain of tenecin 1, an antimicrobial protein of larvae of Tenebrio molitor. Biochem. J. 334(Pt 1, Is 3): 99–105. DOI: 10.1002/(SICI)1097-0029(19990501)45:3〈154::AID-JEMT3〉3.0.CO;2-5

    PubMed  CAS  Google Scholar 

  • Lensky Y. & Rakover Y. 1983. Separate protein body compartments of the worker honeybee (Apis mellifera L.). Comp. Biochem. Physiol. 75B(4): 607–615. DOI: 10.1016/0305-0491(83)90104-9

    CAS  Google Scholar 

  • Lindström A., Korpela S. & Fries I. 2008. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies. J. Invertebr. Pathol. 99(1): 82–86. DOI: 10.1016/j.jip.2008.06.010

    Article  PubMed  Google Scholar 

  • Lodesani M. & Costa M. 2005. Limits of chemotherapy in beekeeping: development of resistance and the problem of residues. Bee World 86(4): 102–109.

    Google Scholar 

  • Masterman R., Ross R., Mesce K. & Spivak, M. 2001. Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honeybees (Apis mellifera L.). J. Comp. Physiol. A 187(6): 441–452. DOI: 10.1007/s003590100216

    Article  PubMed  CAS  Google Scholar 

  • Melliou E. & Chinou I. 2005. Chemistry and bioactivity of royal jelly from Greece. J. Agric. Food Chem. 53(23): 8987–8992. DOI: 10.1021/jf051550p

    Article  PubMed  CAS  Google Scholar 

  • Miyagi T., Peng C.Y.S., Chuang R.Y., Mussen E.C., Spivak M.S. & Doi R.H. 2000. Verification of oxytetracycline-susceptible and -resistant Paenibacillus larvae in United States. J. Invertebr. Pathol. 75(1): 95–96. DOI: 10.1006/jipa.1999.4888

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, K., Natori S. & Kubo T. 1997. Change in the mode of gene expression of the hypopharyngeal gland cells with agedependent role change of the worker honeybee Apis mellifera L. Eur. J. Biochem. 249(3): 797–802. DOI: 10.1111/j.1432-1033.1997.t01-1-00797.x

    Article  PubMed  CAS  Google Scholar 

  • Otvos L., Jr. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6(10): 497–511. PMID: 11071264

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Sato J.A., Châlin N., Martin S.J., Hughes W.O.H. & Ratnieks F.L.W. 2009. Multi-level selection for hygienic behaviour in honeybee. Heredity 102(6): 609–615. DOI: 10.1038/hdy.2009.20

    Article  PubMed  Google Scholar 

  • Randolt K., Gimple O., Geissendörfer J, Reinders J., Prusko C., Mueller M.J., Albert S., Tautz J. & Hildburg B. 2008. Immune-related proteins induced in the hemolymph after aseptic and septic injury differs in honey bee worker larvae and adults. Arch. Insect Biochem. Physiol. 69: 155–167. DOI: 10.1002/arch.20269

    Article  PubMed  CAS  Google Scholar 

  • Ratnieks F.L.W. 1992. American foulbrood: the spread and control of an important disease of the honey bee. Bee World 73(3): 177–191.

    Google Scholar 

  • Rauch S., Ashiralieva A., Hedtke K. & Genersch E. 2009. Negative correlation between individual-insect-level virulence and colony-level virulence of Paenibacillus larvae, the ethiological agent of American foulbrood of honeybees. Appl. Environ. Microbiol. 75(10): 3344–3347. DOI: 10.1128/AEM.02839-08

    Article  PubMed  CAS  Google Scholar 

  • Rembold H. 1987. Die Kastenbildung bei der Honigbiene, Apis mellifica L., aus biochemischer Sicht, pp. 350–403. In: Schmidt G.H. (ed.), Sozialpolymorphismus bei Insekten. Probleme der Kastenbildung im Tierreich. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 974 pp. ISBN: 38047094 27 9783804709423

    Google Scholar 

  • Rinderer T.E., Rothenbuhler W.C. & Gochnauer T.A. 1974. The influence of pollen on the susceptibility of honey bee-larvae to Bacillus larvae. J. Invertebr. Pathol. 23(3): 347–350. DOI: 10.1016/0022-2011(74)90100-1

    Article  PubMed  CAS  Google Scholar 

  • Rose R.I. & Briggs J.D. 1969. Resistance to American foulbrood in honey bees. IX. Effects of honey-bee larval food on the growth and viability of Bacillus larvae. J. Invertebr. Pathol. 13(1): 74–80. DOI: 10.1016/0022-2011(69)90240-7

    Article  Google Scholar 

  • Rothenbuhler W.C. & Thompson V.C. 1956. Resistance to American foulbrood in honey bees. I. Differential survival of larvae of different genetic lines. J. Econ. Entomol. 49: 470–475.

    Google Scholar 

  • Schägger H. & von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166(2): 368–379. DOI: 10.1016/0003-2697(87)90587-2

    Article  PubMed  Google Scholar 

  • Schmitzová J., Klaudiny J., Albert Š., Schröder W., Schreckengost W., Hanes J., Júdová J. & Šimúth J. 1998. A family of major royal jelly proteins of the honeybee (Apis mellifera L.). Cell. Mol. Life Sci. 54(9): 1020–1030. PMID: 9791542

    Article  PubMed  Google Scholar 

  • Sedmak J.J. & Grossberg S.E. 1977. A rapid, sensitive, and versatile assy for protein using Coomassie Brilliant Blue G250. Anal. Biochem. 79(2): 544–552. DOI: 10.1016/0003-2697(77)90428-6

    Article  PubMed  CAS  Google Scholar 

  • Shimanuki H., Knox D.A., Furgala B., Caron D.M. & Williams J.L. 1992. Diseases and pests of honey bees, pp. 1083–1154. In: Graham J.M. (ed.), The Hive and the Honey Bee, Dadant & Sons, Hamilton, Illinois, 1324 pp. ISBN: 0915698099

    Google Scholar 

  • Spivak M. & Gilliam M. 1998a. Hygienic behaviour of honey bees and its application for control of brood diseases and varroa. Part I. Hygienic behavior and resistance to American foulbrood. Bee World 79(3): 124–134.

    Google Scholar 

  • Spivak M. & Gilliam M. 1998b. Hygienic behaviour of honey bees and its application for control of brood diseases and varroa. Part II. Studies on hygienic behaviour since the Rothenbuhler era. Bee World 79(4): 169–186.

    Google Scholar 

  • Spivak M. & Reuter G.D. 2001. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32(6): 555–565. DOI: 10.1051/apido:2001103

    Article  Google Scholar 

  • Stoscheck C.M. 1990. Quantitation of protein, pp. 50–67. In: Deutscher M.P. (ed.), Methods in Enzymology, Vol. 182, Guide to Protein Purification, Academic Press, Inc., 894 pp. ISBN: 0122135857, 978-0122135859

  • Sturtevant A.P. & Revell I.L. 1953. Reduction of Bacilus larvae spores in liquid food of honeybees by action of the honey stopper, and its relation to the development of American foulbrood. J. Econ. Entomol. 46(5): 855–860.

    Google Scholar 

  • Takenaka T. & Echigo T. 1983. Proteins and peptides in royal jelly, Nippon Nogeikagaku Kaishi 57: 1203–1209.

    Article  CAS  Google Scholar 

  • Tomoda T., Matsuyama J. & Matsuka M. 1977. Studies on protein in royal jelly. 2: Fractionation on water soluble protein on DEAE-cellulose chromatography, gel filtration and disc electrophoresis. J. Apic. Res. 16: 125–130.

    CAS  Google Scholar 

  • Wedenig M., Riessberger-Galle U. & Crailsheim K. 2003. A substance in honey bee larvae inhibits the growth of Paenibacillus larvae larvae larvae. Apidologie 34(1): 43–51. DOI: 10.1051/apido:2002043

    Article  Google Scholar 

  • Williams D.L. 2000. A veterinary approach to the European honey bee (Apis mellifera). Vet. J. 160(1): 61–73. DOI: 10.1053/tvjl.2000.0474

    Article  PubMed  CAS  Google Scholar 

  • Wilson-Rich N., Dres S.T. & Starks P.T. 2008. The ontogeny of immunity: Development of innate immune strength in the honeybee (Apis mellifera). J. Insect Physiol., 54(10–11): 1392–1399. DOI: 10.1016/j.jinsphys.2008.07.016 PMID:18761014

    Article  PubMed  CAS  Google Scholar 

  • Wilson-Rich N., Spivak M., Fefferman N.H. & Starks P.T. 2009. Genetic, individual, and group facilitation of disease resistance in insect societies. Ann. Rev. Entomol. 54: 405–423. DOI: 10.1146/annurev.ento.53.103106.093301

    Article  CAS  Google Scholar 

  • Wong J.H., Xia L. & Ng T. B. 2007. A Review of defensins of diverse origins. Curr. Prot. Pept. Sci. 8(5): 446–459. PMID: 17979760

    Article  CAS  Google Scholar 

  • Woodrow A.W. & Holst E.C. 1942. The mechanism of colony resistance to American foulbrood. J. Econ. Entomol. 35(3): 327–330.

    Google Scholar 

  • Yamada K. & Natori S. 1994. Characterization of the antimicrobial peptide derived from sapecin B, an antimicrobial protein of Sarcophaga peregrina (flesh fly). Biochem. J. 298(Pt.3): 623–628. PMID: 1137905

    PubMed  CAS  Google Scholar 

  • Yatsunami K. & Echigo T. 1985. Antibacterial action of royal jelly. Bull. Fac. Agric. Tamagawa Univ. 25: 13–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Klaudiny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaudiny, J., Bachanová, K., Kohútová, L. et al. Expression of larval jelly antimicrobial peptide defensin1 in Apis mellifera colonies. Biologia 67, 200–211 (2012). https://doi.org/10.2478/s11756-011-0153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0153-8

Key words

Navigation